Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C N M
Xét \(\Delta ABC\) có :
\(AB=AC\) ( gt )
\(\Rightarrow\Delta ABC\) cân tại \(\widehat{A}\)
\(\Rightarrow\widehat{B}=\widehat{C}\)
Ta có : \(AB=AC\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow BM=CN\)
Xét \(\Delta BNC\) và \(\Delta CMB\) có :
\(CN=BM\left(cmt\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
\(AC\) là cạnh chung
Do đó 2 tam giác bằng nhau.
Vậy ...................
M là trung điểm của AC
=> AM = MC = AC/2
N là trung điểm của AB
=> AN = NB = AB/2
mà AC = AB (tam giác ABC cân tại A)
=> MC = NB
Xét tam giác BNC và tam giác CMB có:
NB = MC (chứng minh trên)
NBC = MCB (tam giác ABC cân tại A)
BC là cạnh chung
=> Tam giác BNC = Tam giác CMB (c.g.c)
a: Xét ΔBNC và ΔCMB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó: ΔBNC=ΔCMB
b: Ta có: ΔBNC=ΔCMB
nên \(\widehat{NCB}=\widehat{MBC}\)
hay \(\widehat{KBC}=\widehat{KCB}\)
Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)
nên ΔKBC cân tại K
hay KB=KC
a) Ta có: \(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)
\(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)
mà AC=AB(gt)
nên AM=MC=AN=NB
Xét ΔAMB và ΔANC có
AM=AN(cmt)
\(\widehat{BAM}\) chung
AB=AC(gt)
Do đó: ΔAMB=ΔANC(c-g-c)
b) Xét ΔABC có AB=AC(Gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)
hay \(\widehat{NBC}=\widehat{MCB}\)
Xét ΔNBC và ΔMCB có
NB=MC(cmt)
\(\widehat{NBC}=\widehat{MCB}\)(cmt)
BC chung
Do đó: ΔNBC=ΔMCB(c-g-c)
Ta có: AN = BN = \(\dfrac{1}{2}\)AB (N là trung điểm của AB)
AM = CM = \(\dfrac{1}{2}\)AC (M là trung điểm của AC)
Mà AB = AC ( do tam giác ABC cân tại A)
=> AN = BN = AM = CM
Xét tam giác BNC và tam giác CMB:
+ BC chung
+ ^B = ^C (tam giác ABC cân tại A)
+ BN = CM (cmt)
=> Tam giác BNC = tam giác CMB (c-g-c)
=> ^NCB = ^MBC (2 góc tương ứng)
Hay ^KCB = ^KBC
=> Tam giác BKC cân tai K
Xét tam giác ABC: M là trung điểm của AC (gt)
N là trung điểm của AB (gt)
=> MN là đường trung bình của tam giác ABC (định nghĩa đường trung bình trong tam giác)
=> MN // BC (TC đường trung bình trong tam giác)
a) Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)
\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AN=NB=AM=MC
Xét ΔBNC và ΔCMB có
BN=CM(cmt)
\(\widehat{NBC}=\widehat{MCB}\)(hai góc ở đáy của ΔABC cân tại A)
BC chung
Do đó: ΔBNC=ΔCMB(c-g-c)
b) Xét ΔANC và ΔABM có
AN=AM(cmt)
\(\widehat{NAC}\) chung
AC=AB(ΔABC cân tại A)
Do đó: ΔANC=ΔABM(c-g-c)
⇒\(\widehat{ACN}=\widehat{ABM}\)(hai góc tương ứng)
hay \(\widehat{NBK}=\widehat{MCK}\)
Xét ΔNBK có
\(\widehat{NBK}+\widehat{NKB}+\widehat{BNK}=180^0\)(Định lí tổng ba góc trong một tam giác)(1)
Xét ΔMCK có
\(\widehat{MCK}+\widehat{MKC}+\widehat{CMK}=180^0\)(Định lí tổng ba góc trong một tam giác)(2)
Từ (1) và (2) suy ra \(\widehat{NBK}+\widehat{NKB}+\widehat{BNK}=\widehat{MCK}+\widehat{MKC}+\widehat{CMK}\)
mà \(\widehat{NBK}=\widehat{MCK}\)(cmt)
và \(\widehat{NKB}=\widehat{MKC}\)(hai góc đối đỉnh)nên \(\widehat{BNK}=\widehat{CMK}\)Xét ΔNBK và ΔMCK có \(\widehat{BNK}=\widehat{CMK}\)(cmt)BN=CM(cmt)\(\widehat{NBK}=\widehat{MCK}\)(cmt)Do đó: ΔNBK=ΔMCK(g-c-g)⇒KB=KC(hai cạnh tương ứng)Xét ΔKBC có KB=KC(cmt)nên ΔKBC cân tại K(Định nghĩa tam giác cân)a: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
BC chung
=>ΔNBC=ΔMCB
b: ΔNBC=ΔMCB
=>góc KBC=góc KCB
=>ΔKBC cân tại K
c: Xét tứ giácc AKCI có
M là trung điểm chung của AC và KI
nên AKCI là hình bình hành
=>CI//AK
A B C M N
Vì \(\Delta ABC\)có \(AB=AC\) nên cân tại A.
\(\Rightarrow\)Góc NBC = Góc MCB
\(AB=AC\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow BM=CN\)
Xét \(\Delta BNC\)và \(\Delta CMB:\)
\(CN=BM\)( chứng minh trên )
Góc NBC = Góc MCB( chứng minh trên )
Chung cạnh BC
\(\Rightarrow\Delta BNC=\Delta CMB\)
Vậy \(\Delta BNC=\Delta CMB\)
Chưa hỉu cho lắm bn giảng thêm đc không