Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/S: Một bài toán rất hay của toán lớp 7 khi phải dùng t/c đường phân giác dùng ở lớp 8, mình đã chứng minh t/c đó bằng cách lớp 7 nên bạn cứ yên tâm sử dụng khi thi!
a) \(\Delta\)ABC có AB2 + AC2 = 62 + 82 = 100
và BC2 = 102 = 100
=> AB2 + AC2 = BC2
=> \(\Delta\)ABC vuông tại A (định lý Pythagoras đảo)
b) CI và AI là hai đường phân giác của \(\Delta\)ABC nên ^AIC = 900 + \(\frac{\widehat{B}}{2}\)
Mà ^BDC = 900 + \(\frac{\widehat{B}}{2}\)(tính chất góc ngoài) nên ^AIC = ^BDC (đpcm)
c) Trên BC lấy K sao cho BA = BK
Dễ chứng minh \(\Delta\)ABD = \(\Delta\)ABK (c.g.c)
=> \(S_{\Delta ABD}=S_{\Delta ABK}\)và AD = KD (hai cạnh tương ứng)
Ta có: \(\frac{S_{\Delta ABD}}{S_{\Delta BDC}}=\frac{AD}{DC}\)(vì có cùng chiều cao hạ từ B)
\(\frac{S_{\Delta BDK}}{S_{\Delta BDC}}=\frac{BK}{BC}\)(vì có cùng chiều cao hạ từ D)
Từ đó suy ra \(\frac{AD}{DC}=\frac{BK}{BC}\Rightarrow\frac{AD}{DC}=\frac{BA}{BC}=\frac{6}{10}\)
\(\Rightarrow10AD=6DC\Rightarrow5AD=3DC\left(đpcm\right)\)
d) Từ câu c) dễ tính được DC = 5cm
=> \(\Delta\)MIC = \(\Delta\)DIC (c.g.c) => ^IMC = ^IDC (hai góc tương ứng)
=> ^BDA = ^IMB
=> ^IBM + ^IMB = ^ABD + ^BDA = 900
Vậy \(\Delta\)BIM vuông tại I (đpcm)
Bạn tự vẽ hình nhé. Mình giải thôi.
1)Bạn chia 2 TH.
a) Góc MDB lớn hơn hoac bằng 60 độ
=>MD<MB mà ME>MC=MB
=>MD<ME.
b) Góc MDB nhỏ hơn 60 độ.
=> MD giao CA tại E .
Dễ dàng cminh DM<ME.
2) Ta có tam giác ABC cân tại A => AI là phân giác cũng là trung trực BC
=> AI trung trực BC. Mà AO là trung trục BC.
=> AI trùng AO.
=>OI là trung trực BC
Đè bài cần xem lại nhé.
3)Ta có góc B > góc C => AC>AB
Có AC đối dienj góc vuông trong tam giác vuông AEC => AC>CE
Tương tự AB>BD
Tất cả các điều => AC-AB>CE-BD