K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2022

a, Ta có :

 \(AB^2+AC^2=3^2+4^2=25\)

\(BC^2=5^2=25\)

\(=> AB^2+AC^2=BC^2\)

\(=> \) △ABC vuông tại A

b, Xét △BAH và △BEH có :

\(\widehat{BHA}=\widehat{BHE}=90^o\)

BH : chung

HE = HA (GT)

=> △BAH = △BEH (c.g.c)

=> BA = BE (2 cạnh tương ứng)

c, Xét △CAH và △CEH có :

\(\widehat{CHA}=\widehat{CHE}=90^o\)

\(CH\) :chung

AH = HE (GT)

=> △CAH = △CEH (c.g.c)

=> \(\widehat{C_1}=\widehat{C_2}\)

=> CH là phân giác \(\widehat{ACE}\)

d, Xét △BAC và △BEC có :

\(BA=BE (câu a)\)

CA = CE (△CAH = △CEH)

BC : chung

=> △BAC = △BEC(c.c.c)

=> \(\widehat{BAC}=\widehat{BEC}\)

mà \(\widehat{BAC}=90^o\)

\(=> \widehat{BEC}=90^o\)

=> △BEC vuông tại E

 

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔBAE có

BH là đường cao

BH là đường trung tuyến

DO đó:ΔBAE cân tại B

hay BA=BE

c: Xét ΔCAE có 

CH là đường cao

CH là đường trung tuyến

Do đó:ΔCAE cân tại C

mà CB là đường cao

nên CB là tia phân giác của góc ACE

d: Xét ΔCAB và ΔCEB có

CA=CB

BA=BE

BC chung

DO đó:ΔCAB=ΔCEB

Suy ra: \(\widehat{CAB}=\widehat{CEB}=90^0\)

hay ΔBEC vuông tại E

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
20 tháng 9 2020

                                                                  B A D E C

a) Xét \(\Delta ABC\)vuông tại A có :

\(BC^2=AB^2+AC^2\)( ĐL Py - ta - go )

\(BC^2=4^2+3^2\)

\(BC^2=16+9\)

\(BC^2=25\)

\(\Rightarrow BC=\sqrt{25}=5\left(cm\right)\)

Vậy BC = 5cm

b) Xét \(\Delta BAE\)và \(\Delta DAE\)có :

                \(BA=AD\left(gt\right)\)

                \(\widehat{BAE}=\widehat{DAE}\left(=90^o\right)\)

                 AE chung

\(\Delta BAE=\Delta DAE\left(c.g.c\right)\)

\(\Rightarrow BE=DE\)( 2 cạnh tương ứng )

và \(\widehat{BEA}=\widehat{DEA}\)( 2 góc tương ứng )

mà \(\widehat{BEA}+\widehat{BEC}=180^o\)( kề bù )

     \(\widehat{DEA}+\widehat{DEC}=180^o\)( kề bù )

\(\Rightarrow\widehat{BEC}=\widehat{DEC}\)

Xét \(\Delta BEC\)và \(\Delta DEC\)có :

                \(BE=ED\left(cmt\right)\)

            \(\widehat{BEC}=\widehat{DEC}\left(cmt\right)\)

                 EC chung

\(\Rightarrow\Delta BEC=\Delta DEC\left(c.g.c\right)\)

21 tháng 2 2017

a) Vì tam giác ABC vuông tại A

Áp dụng định lí py-ta-go ta có:

BC^2 =AB^2+AC^2

BC^2= 3^2+4^2

BC^2=9+16

BC^2=25

BC=5 (cm)

b)Vì AD=AB

=> Tam giác ABD cân tại A

c)

Xét tam giác AED và tam Giác ACB có:

AD=AB(gt)

A1=A2 (2 góc đối đỉnh)

AE=AC(gt)

=>Tam giác AED=ACB(C.g.c)

=>DE=BC(2 Cạnh Tương ứng)

21 tháng 2 2017

ghhbvjk