K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2015

b/ ta có: Góc DAE = 360 - (90 . 2) - góc A = 180 - 110 = 70 độ

từ tam giác ABM = tam giác KCM => AB = CK

Xét tam giác CAK & tam giác AED có:

KCA = DAE (bằng 70 độ)

AD = CK (bằng AB)

AC = AE (gt)

=> tam giác CAK = tam giác AED (cgc)

28 tháng 1 2016

b, vì tam giác ABM=tam giác KCM(câu a) =>AB=CK(2 cạnh tương ứng)

mà AB=AD(gt) =>KC=AD

Có DAE+DAB+EAC+BAC=3600=>DAE=3600-(DAB+EAC+BAC)

​mả DAB=900(AD vuông góc vs AB-GT)

EAC=900(AE vuông góc vs AC-GT)

BAC=1100 (GT)

=>DAE=3600-(900+900+1100)=700

Có DAE=700(CMT)

ACK=700(câu a)

=>DAE=ACK(=700)

Xét tam giác CAK & tam giác AED có:

CK=AD(cmt)

CA=AE(gt)

DAE=ACK(cmt)

=>tam giác CAK=tam giác AED(c.g.c)

phần c mik k bit lm giúp nhé

20 tháng 10 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Có: ∠DAE + ∠DAB + ∠BAC + ∠CAE = 360o

Mà ∠DAB = ∠CAE = 90o; ∠BAC = 110o

⇒ ∠DAE = 70o

⇒ ∠DAE = ∠ACK

+) Xét ΔCAK và ΔAED có:

AC = AE (gt)

∠ACK = ∠DAE (chứng minh trên)

CK = AD (cùng = AB)

⇒ ΔCAK = ΔAED (c.g.c)

16 tháng 1 2017

A B C D E G F H M N

ta có góc DAC = góc EAB = 90 độ (gt)

suy ra \(\widehat{DAB}+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}\) (vì tia AB nằm giữa 2 tia AD và AC , tia AC nằm giữa 2 tia AE và AB )

hay \(\widehat{DAC}=\widehat{EAB}\)

\(\Delta DAC\)\(\Delta BAE\)có \(\hept{\begin{cases}AD=AB\left(gt\right)\\\widehat{DAC}=\widehat{EAB}\left(cmt\right)\\AE=AC\left(gt\right)\end{cases}}\)

do đó \(\Delta DAC=\Delta BAE\left(c.g.c\right)\)

suy ra \(DC=BE\)(2 góc tương ứng)

và \(\widehat{EBA}=\widehat{CDA}\)( 2 góc tương ứng )

gọi giao điểm của AB và CD là G , giao điểm của DC và BE là F 

\(\Delta ADG\)và \(\Delta GBF\)có \(\hept{\begin{cases}\widehat{D}=\widehat{B}\left(cmt\right)\\\widehat{DGA}=\widehat{BGF}\\\Rightarrow\widehat{BFG}=\widehat{DAG}=90^o\end{cases}}\)(đối đỉnh)

hay \(BE⊥DC\)

b) ta có góc DAH là góc ngoài của tam giác AMD 

suy ra \(\widehat{DAH}=\widehat{AMD}+\widehat{ADM}\) hay \(\widehat{DAB}+\widehat{BAH}=\widehat{AMD}+\widehat{ADM}\)(vì tia AB nằm giữa 2 tia AD và AH )

mà \(\widehat{DAB}=\widehat{AMD}=90^o\)\(\Rightarrow\widehat{BAH}=\widehat{ADM}\)

\(\Delta ABH\)\(\Delta DAM\)có \(\hept{\begin{cases}DA=BA\left(gt\right)\\\widehat{BAH}=\widehat{ADM}\left(cmt\right)\end{cases}}\)

do đó \(\Delta ABH=\Delta DAM\)(cạnh huyền - góc nhọn )

suy ra AH =DM ( 2 cạnh tương ứng )

theo đề và từ hình vẽ ta có MN trùng AH

ta có góc EAH là góc ngoài của tam giác ANE  

\(\Rightarrow\widehat{EAH}=\widehat{ANE}+\widehat{AEN} hay \widehat{EAC}+\widehat{HAC}=\widehat{ANE}+\widehat{AEN}\)

mà \(\widehat{EAC}=\widehat{ANE}=90^o\)\(\Rightarrow\widehat{HAC}=\widehat{AEN}\)

\(\Delta ACH\)\(\Delta EAN\)có  

cạnh huyền AC = cạnh huyền AE

\(\widehat{HAC}=\widehat{AEN}\left(cmt\right)\)

do đó \(\Delta ACH=\Delta EAN\)(cạnh huyền góc nhọn )

suy ra AH = NE ( 2 cạnh tương ứng )

mà AH =DM

suy ra DM = NE 

ta có \(DM⊥NH;EN⊥NH\Rightarrow\)DM//EN

gọi giao điểm của DE và NH là T

xét tam giác vuông MTD và tam giác vuông NTE

góc MDT  = góc NET ( so le trong )

DM = NE (cmt) 

do đó \(\Delta MDT=\Delta NET\)(cạnh huyền góc nhọn )

suy ra DN = NE ( 2 cạnh tương ứng ) (1)

\(\Delta MDT\)và \(\Delta NET\)có \(\hept{\begin{cases}\widehat{MDT}=\widehat{NET}\\\widehat{DMT}=\widehat{ENT}=90^o\\\Rightarrow\widehat{DTM}=\widehat{ETN}\end{cases}}\)

ta có \(\widehat{NTE}+\widehat{MTE}=180^o\)( kề bù )

mà \(\widehat{NTE}=\widehat{DTM}\left(cmt\right)\)\(\Rightarrow\widehat{MTE}+\widehat{DTM}=180^o\)hay D;N;E thẳng hàng (2)

từ (1) và (2) suy ra N là trung điểm D;E 

hay MN và AH đi qua trung điểm DE

câu c gửi bạn sau mk đi học r

chúc bạn học tốt

26 tháng 11 2017

tớ không hiểu ý của đề