Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMB và ΔAMC có:
AB=AC(gt)
\(\widehat{BAM}=\widehat{CAM}\)(AM là tia phân giác góc A)
AM chung
=> ΔAMB=ΔAMC(c.g.c)
b) Ta có: ΔAMB=ΔAMC(cmt)
=> \(\widehat{AMB}=\widehat{AMC}\)
Mà 2 góc này là 2 góc kề bù
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\)
=> AM⊥BC
c) Ta có: ΔAMB=ΔAMC(cmt)
=> BM=MC( 2 cạnh tương ứng)
=> M là trung điểm BC
A B C M 1 2 1 2
A)TA CÓ AB =AC
\(\Rightarrow\Delta ABC\)CÂN TẠI A
\(\Rightarrow\widehat{B}=\widehat{C}\)
XÉT \(\Delta AMB\)VÀ \(\Delta AMC\)CÓ
\(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)
\(AB=AC\left(GT\right)\)
\(\widehat{B}=\widehat{C}\left(CMT\right)\)
\(\Rightarrow\Delta AMB=\Delta AMC\left(G-C-G\right)\)
B)VÌ \(\Delta AMB=\Delta AMC\left(G-C-G\right)\left(CMT\right)\)
\(\Rightarrow\widehat{M_1}=\widehat{M_2}\)(HAI CẠNH TƯƠNG ỨNG)
MÀ\(\widehat{M}_1+\widehat{M}_2=180^o\left(KB\right)\)
THAY\(\widehat{M}_2+\widehat{M}_2=180^o\)
\(2\widehat{M}_2=180^o\)
\(\widehat{M}_2=\frac{180^o}{2}=90^o\)
\(\Rightarrow AM\perp BC\)
C) \(\Delta AMB=\Delta AMC\left(G-C-G\right)\left(CMT\right)\)
=> BM=CM (HAI CẠNH TƯƠNG ỨNG)
=> M LÀ TRUNG ĐIỂM CỦA BC
Hình tự vẽ...
a) Xét \(\Delta AMB\) và \(\Delta AMC\) có:
AB = AC ( giả thiết )
AM: Cạnh chung
AM = BM ( Vì M là trung điểm của BC )
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\) (đpcm)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) ( hai góc tương ứng)
Ma lại có: \(\widehat{AMB}+\widehat{AMC}=180\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\frac{180}{2}=90^o\)
=> AM vuông góc với BC
b) Vì \(CE\perp AB\) và \(AM\perp BC\)
=> EC // AM ( Từ vuông góc đến song song )
c) Vì tam giác ABC vuông cân
\(\Rightarrow\widehat{ACB}=\widehat{ABC}=45^o\)
\(\Rightarrow\widehat{ACE}=90^o-45^0=45^0\)
Xét \(\Delta ACE\) và \(\Delta ACE\) , có:
\(\widehat{ACE}=\widehat{ACB}=45^0\)
\(\widehat{CAE}=\widehat{BAC}=90^0\)
AC: Cạnh chung
=> \(\Delta ACE=\Delta ACB\left(g.c.g\right)\)
=> CE = CB (hai cạnh tương ứng)
a) tam giác AMB và AMC có :
AM là cạnh chung
AB=AC(giả thiết)
MB=MC( M trung điểm của BC)
=>tam giác AMB=AMC(c-c-c)
b) tam giác AMB =AMC(cm trên)
=> góc BAM = CAM (hai góc tương ứng)
mà AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c)tam giác AMB = AMC (cm trên)
=> góc AMB = AMC( 2 góc tương ứng)
mà góc AMB+AMC=180o
=> góc AMB=AMC=180/2=90o
=> AM vuông góc với BC
nhớ vẽ hình
tick nha
xét tam giác AMB và tam giác AMC có:
MA chung
AB=AC (giả thiết)
MC=MB(M trung điểm BC)
Nên tam giác AMB=tam giác AMC(c.c.c)
b, Từ chứng minh a
=> góc MAB = góc MAC và AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ
=> góc AMB=góc AMC=180 độ :2=90 độ
Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát)
Và AM vuông góc BC ( chứng minh trên)
Và AM cắt đường vuông góc BC tại I
=> I là trọng tâm tam giác ABC
=> CI vuông góc CA
xét tam giác AMB và tam giác AMC có:
MA chung
AB=AC (giả thiết)
MC=MB(M trung điểm BC)
Nên tam giác AMB=tam giác AMC(c.c.c)
b, Từ chứng minh a
=> góc MAB = góc MAC và AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ
=> góc AMB=góc AMC=180 độ :2=90 độ
Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát)
Và AM vuông góc BC ( chứng minh trên)
Và AM cắt đường vuông góc BC tại I
=> I là trọng tâm tam giác ABC
=> CI vuông góc CA