Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Vì AB=AH(gt)
AH=AI(gt)
=> AB+AI( áp dụng tính chất bắc cầu
2. Dễ thấy góc BAH=góc BCA vì cả hai góc cùng phụ với góc ABC:
góc BAH+gócHBA=90 độ (tam giác ABH vuông tại H)
góc BCA = góc ABC = 90 độ ( tam giác ABC vuông tại A)
Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>AD=AE
Xét ΔABC có AD/AB=AE/Ac
nên DE//BC
a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A
ta có:
BC2=AB2+AC2
BC2=62+82
BC2=36+64=100
⇒BC=\(\sqrt{100}\)=10
vậy BC=10
AB và AC không bằng nhau nên không chứng minh được bạn ơi
còn ED và AC cũng không vuông góc nên không chứng minh được luôn
Xin bạn đừng ném đá
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC và \(\widehat{BAH}=\widehat{CAH}\)
b: Ta có: HB=HC
H nằm giữa B và C
Do đó: H là trung điểm của BC
=>\(HB=HC=\dfrac{BC}{2}=4\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=5^2-4^2=9\)
=>\(AH=\sqrt{9}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
a, Vẽ tia HM là tia đối của tia AH , sao cho BH =HC
Xét tg AHB và AHC
Có : H là góc chung
BH=HC
AH=HM
Vậy : tg AHB= tg AHC
Nên : MC=AB ( tg AHB = tg AHC)
Có : AM < AC+CM (bdt)
Mà : AM=2AH và AC+CM=AC+AB
Nên : 2AH=AC+AB
=> AH=AC+B/2
Vậy đpcm ở câu a
b, từ rồi mk lm
tự kẻ hình
AB = 6 (gt) => AB^2 = 6^2 = 36
AC = 8 (gt) => AC^2 = 8^2 = 64
=> AB^2 + AC^2 = 36 + 64 = 100
BC = 10 (gt) => BC^2 = 10^2 = 100
=> AB^2 + AC^2 = BC^2
=> AH^2 + BC^2 = AH^2 = AH^2 + AC^2 + AB^2
=> AH^2 + BC^2 > AB^2 + AC^2
=> AH + BC > AB + AC do AH; BC; AB; AC >0