Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A' là điểm đối xứng của A qua M, bạn tự vẽ hình nhé), xét tam giác ADE và tam giác BA'A, có
AB = AD, BA' = AC = AE, góc EAD = EAC + CAD = 90 độ + 90 độ - BAC = 180 độ - BAC = ABA'
Do đó hai tam giác này nbằng nhau theo TH c.g.c
==> DE = AA', mà BACA' là hình bình hành nên AM = 1/2 AA' , đpcm
Dựa vào tíh chất hai tam giác bằng nhau có hai cặp cạnh tương ừng vuông góc thì cặp cạnh còn lại cũng vuông góc, ta CM được AM vuông góc với DE
tick nha
Cho_tam_gi_c_ABC_tr_n_n_a_m_t_ph_ng_b.png (600×340)
tick nha
a) Ta có :
AB = AD ( gt ) ( 1 )
CA = AE ( gt ) ( 2 )
Từ ( 1 )( 2 )=>AB+AE = AC + AD
hay BE = CD
A B C D E M F I K J
Trên tia đối của tia AM, lấy điểm I sao cho MI = MA. Khi đó ta có thể suy ra \(\Delta AMC=\Delta IMB\left(c-g-c\right)\)
\(\Rightarrow\widehat{MCA}=\widehat{MBI}\) hay BI // AC và BI = AC.
Gọi N là giao điểm của BI và AE. Do AE vuông góc với AC nên AE cũng vuông góc với BI. Vậy thì \(\widehat{AKI}=90^o\)
Ta thấy hai góc DAE và ABI có \(DA\perp AB;AE\perp BI\) nên \(\widehat{DAE}=\widehat{ABI}\)
Vậy thì \(\Delta DAE=\Delta ABI\left(c-g-c\right)\)
\(\Rightarrow\widehat{DEA}=\widehat{AIB}\)
Kéo dài NI cắt DE tại J, AI cắt DE tại F.
Xét tam giác vuông NEJ ta có \(\widehat{NJE}+\widehat{JEN}=90^o\)
Vậy nên \(\widehat{NJE}+\widehat{JIF}=90^o\Rightarrow\widehat{JFI}=90^o\)
Hay \(AM\perp DE.\)
x H y E D A B M C K
a, Để chứng tỏ DE = 2AM,ta tạo ra đoạn thẳng gấp đôi AM bằng cách lấy K trên tia đối của tia MA sao cho MK = MA,ta sẽ chứng minh AK = DE
Dễ thấy AC = BK, AC // BK . Xét \(\Delta ABK\)và \(\Delta DAE\), ta có :
AB = AD gt
BK = AE cùng bằng AC
\(\widehat{ABK}=\widehat{DAE}\)cùng bù với góc BAC
Do đó \(\Delta ABK=\Delta DAE(c.g.c)\)
\(\Rightarrow AK=DE\)hai cạnh tương ứng
Vậy AM = DE/2
b, Gọi H là giao điểm của MA và DE.Ta có \(\widehat{BAK}+\widehat{DAH}=90^0\)nên \(\widehat{D}+\widehat{DAH}=90^0\), do đó góc AHD = 900