K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2023

mọi người giải gấp giúp em ạ

 

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

Do đó: ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ABC

b: Kẻ HM//AB(M thuộc AC)

HN//AC(N thuộc AB)

Xét tứ giác AMHN có

AM//HN

AN//HM

Do đó: AMHN là hình bình hành

=>AM=HN; AN=HM

ΔAHM có AH<AM+MH

=>AH<AM+AN

HN//AC

mà BH vuông góc AC

nên HB vuông góc HN

ΔHBN vuông tại H

=>HB<BN

HM//AB

CH vuông góc AB

Do đó: HC vuông góc HM

=>ΔHCM vuông tại H

=>HC<MC

AH<AM+AN

HB<BN

HC<MC

=>HA+HB+HC<AM+AN+BN+MC=AC+AB

Chứng minh tương tự, ta được:
HA+HB+HC<AB+BC và HA+HB+HC<AC+BC

=>3*(HA+HB+HC)<2(BA+BC+AC)

=>HA+HB+HC<2/3*(BA+BC+AC)

a: Xét tứ giác AQHP có

AQ//HP

AP//HQ

=>AQHP là hình bình hành

Xet ΔAHQ và ΔHAP có

HA chung

HQ=AP

AQ=HP

=>ΔAHQ=ΔHAP

b: ΔFBC vuông tại F

mà FM là trung tuyến

nên FM=BC/2

ΔECB vuông tại E

mà EM là trung tuyến

nên EM=BC/2=FM

=>ΔMEF cân tại M

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AEF=góc ABC

6 tháng 2 2021

Vì tam giác ABC cân tại A 

=> góc ABC= góc ACB ( 2 góc ở đáy)

Xét tam giác FBC vuông tại F và tam giác ECB vuông tại E có:

                                        BC là cạnh chung

                                         Góc ABC = góc  ACB (cmt)

Suy ra Tam giác FBC=tam giác ECB ( c.h-g.n)

                 => CF= BE ( 2 cạnh tương ứng)

Vậy BE=CF (đpcm)

A B C F E

a: Xet ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC
\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có

AM chung

AF=AE

Do đó: ΔAFM=ΔAEM

Suy ra: \(\widehat{BAM}=\widehat{CAM}\)

hay AM là tia phân giác của góc BAC

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Lời giải:

Xét tam giác $ABE$ và $ACF$ có:
$\widehat{A}$ chung

$AB=AC$ (gt)

$\widehat{AEB}=\widehat{AFC}=90^0$

$\Rightarrow \triangle ABE=\triangle ACF$ (ch-gn) 

$\Rightarrow AE=AF$

24 tháng 2 2015

a) Tam giác ABE ( góc E=90 độ) và Tam giác ACF ( góc F=90 độ), có:

AB = AC ( gt ) 

Góc A chung

=> tam giác ... = tam giac ... ( cạnh huyền - góc nhọn)

=> BE = CF và góc ABE = góc ACF

b) Tam giác FCB ( góc F = 90 độ) và tam giác BEC ( góc E=90 độ), có:

BC chung

FC = EB ( c/m trên)

=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)

=> FB=EC

Tam giác ECI và tam giác FBI, có:

EC=FB (c/m trên)

góc E= góc F (=90 độ)

góc ACF = góc ABE (c/m trên)

=> tam giác ...= tam giác... (g-c-g)

c) Ta có: FA=AB - FB

              EA=AC - EC

mà AB=AC; FB=EC

=> FA=EA

tam giác AIF(F=90 độ) tam giác AIE (E = 90 độ), có:

AI chung

FA=EA (c/ m trên)

=> tam giác... = tam giác... (  cạnh huyền-cạnh góc vuông)

=> góc BAI = góc CAI

hay AI là phân giác của góc A

 

 

13 tháng 1 2017

Từ đề bài ta suy ra :

Tam giác ABE = OCE nên BE=CE

Ta có góc C = 45 độ

đ/s : 45 độ 

Bài này dễ mà 

13 tháng 1 2017

đáp số: 45
 

21 tháng 8 2019

A B C F E H AB = AC

21 tháng 8 2019

A B C E F H

\(a,\)Xét \(\Delta ABE\)và \(\Delta ACF\)có :

\(\widehat{AEB}=\widehat{ACF}\left(gt\right)\)

\(AB=AC\left(gt\right)\)

\(\widehat{A}\)chung 

\(\Rightarrow\Delta AEB=\Delta ACF\left(g.c.g\right)\)

\(\Rightarrow\widehat{ABE}=\widehat{ACF}\)( Hai góc tương ứng )

\(b,\)Ta có : \(\widehat{ABC}=\widehat{ABE}+\widehat{EBC}\)

\(\widehat{ACB}=\widehat{ACF}+\widehat{FCB}\)

Mà \(\widehat{ABC}=\widehat{ACB};\)\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)

\(\Rightarrow\widehat{EBC}=\widehat{FCB}\)

\(\Rightarrow\Delta HBC\)cân tại H