K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2021

a, Ta có: $HM⊥AB;HN⊥AC$

$⇒\widehat{HMA}=\widehat{HNA}=90^o$

$⇒\widehat{HMA}+\widehat{HNA}=180^o$

$⇒$ Tứ giác $AMHN$ nội tiếp (Tổng 2 góc đối $=180^o$)
b, Xét tam giác $AHB$ vuông tại $H$
Đường cao $HM$ (do $HM⊥AB$)

Nên $AH^2=AM.AB(1)$

Xét tam giác $AHC$ vuông tại $H$
Đường cao $HN$ (do $HN⊥AB$)

Nên $AH^2=AN.AC(2)$

Từ $(1)(2)⇒AM.AB=AN.AC$
$⇒\dfrac{AM}{AC}=\dfrac{AN}{AB}$

Xét tam giác $AMN$ và tam giác $ACB$ có:

$\dfrac{AM}{AC}=\dfrac{AN}{AB}$
$\widehat{A}$ chung

$⇒$  tam giác $AMN$ $\backsim$ tam giác $ACB(c.g.c)$

(đpcm)

c,  tam giác $AMN$ $\backsim$ tam giác $ACB$

$⇒\widehat{ANM}=\widehat{ABC}$

Xét $(O)$ có: $\widehat{ABC}=\widehat{AEC}$ (các góc nội tiếp cùng chắn cung $AC$)

Nên $\widehat{ANM}=\widehat{AEC}$

Hay  $\widehat{ANI}=\widehat{IEC}$

$⇒$ Tứ giác $CEIN$ nội tiếp (góc ngoài tại 1 đỉnh = góc trong đỉnh đối diện)

c, Ta có: $\widehat{ANM}=\widehat{ABC}$

Mà $\widehat{ABC}+\widehat{AKC}=180^o$

do tứ giác $ABCK$ nội tiếp $(O)$

Nên $\widehat{ANM}+\widehat{AKC}=180^o$

Mà $\widehat{ANM}+\widehat{ANK}=180^o$

Nên $\widehat{AKC}=\widehat{ANK}$

Xét tam giác $AKC$ và tam giác $ANK$ có:

$\widehat{AKC}=\widehat{ANK}$

$\widehat{A}$ chung

nên  tam giác $AKC$ $\backsim$ tam giác $ANK(g.g)$

$⇒\dfrac{AK}{AN}=\dfrac{AC}{AK}$

$⇒AK^2=AN.AC$

mà $AH^2=AN.AC(cmt)$

$⇒AK^2=AH^2$

hay $AK=AH$

suy ra tam giác $AHK$ cân tại $A$undefined

 

21 tháng 3 2021

Nguyễn Lê Phước Thịnh

Akai Haruma     Trần Đức Mạnh  Nguyễn Việt Lâm

19 tháng 4 2020

a) xét tứ giác AHMN có:

\(\widehat{AHM}+\widehat{ANH}=90^o+90^o=180^o\)

=> Tứ giác AHMN nội tiếp

b) Xét tam giác vuông AHB đường cao HM

=> AM.AB=AH2

Xét tam giác vuông AHC có đường cao HN

=> AN.AC=AH2

=> AM.AB=AN.AC

c) Nối BE

AE là đường kính, B thuộc đường tròn

=> \(\widehat{ABE}=90^o\Rightarrow\widehat{CBE}+\widehat{ABH}=90^o\)

Mà \(\widehat{CBE}=\widehat{CAE}\)(cùng chắn cung CE)

=> \(\widehat{CAE}+\widehat{ABH}=90^o\)=> \(\widehat{CAE}=\widehat{BAH}\)(cùng phụ \(\widehat{ABH}\))

=> \(\widehat{BAE}=\widehat{HAC},\widehat{AMN}=\widehat{AHN}\)(cùng chắn cung AN, tứ giác ANHM nội tiếp)

=> \(\widehat{BAE}+\widehat{AMN}=\widehat{HAC}+\widehat{AHN}=90^o\)

=> \(\widehat{AOM}=90^o\Rightarrow AE\perp MN\)

d) Xét tam giác AKE vuông tại K, KI là đường cao

=> AI.AE=AK2

Xét tam giác AN và tam giác ACE có: \(\widehat{AIN}=\widehat{ACE}=90^o\)

\(\widehat{AIN}\)chung

\(\Rightarrow\Delta AIN\)đồng dạng với tam giác ACE (gg)

=> \(\frac{AI}{AC}=\frac{AN}{AE}\Leftrightarrow AI\cdot AE=AC\cdot AN\)

Mà AN.AC=AH2

=> AK2=AH2 => AH=AK

19 tháng 4 2020

giá như bạn trả lời sớm hơn thì tốt quá , giờ tớ ko cần lắm @@ , lúc thi trực tuyến đăng bài ko có ai giải , sau khi vừa kết thúc thì có người giải ^^

17 tháng 3 2023

Giải