Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ \(\left\{{}\begin{matrix}S_{ABC}=\frac{1}{2}\cdot AI\cdot BC\\S_{BHC}=\frac{1}{2}\cdot HI\cdot BC\end{matrix}\right.\)
( với \(S_{ABC},S_{BHI}\) lần lượt là diện tích ΔABC, ΔBHI )
\(\Rightarrow\frac{S_{BHI}}{S_{ABC}}=\frac{\frac{1}{2}\cdot HI\cdot BC}{\frac{1}{2}\cdot AI\cdot BC}=\frac{HI}{AI}\)
+ Tương tự ta cm đc :
\(\frac{HD}{BD}=\frac{S_{AHC}}{S_{ABC}}\)
\(\frac{HE}{CE}=\frac{S_{AHB}}{S_{ABC}}\)
Do đó : \(\frac{HI}{AI}+\frac{HD}{BD}+\frac{HE}{CE}=\frac{S_{BHC}+S_{AHC}+S_{AHB}}{S_{ABC}}\)
\(=\frac{S_{ABC}}{S_{ABC}}=1\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
1: Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{A}\) chung
Do đó: ΔABD∼ΔACE
Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AC\cdot AD\)
2: Xét ΔADE và ΔABC có
AD/AB=AE/AC
\(\widehat{DAE}\) chung
Do đó:ΔADE∼ΔABC
c) Ta có AB vuông góc BK; AB vuông góc CH => BK//CH
tương tự BH//CK => tứ giác BHCK là hình bình hành mà M là trung điểm BC => M là trugn điểm HK => H,M,K thẳng hàng
Hình (tự vẽ)
a) Xét \(\Delta ABDva\Delta ACE\):
\(\widehat{A}\left(chung\right)\)
\(\widehat{E}=\widehat{D}\left(=90'\right)\)
\(=>\Delta ABD\)đồng dạng \(\Delta ACE\left(g-g\right)\)
\(=>\frac{AB}{AC}=\frac{AD}{AE}< =>AB.AE=AC.AD\)
b)xét \(\Delta ADEva\Delta ABC\)
\(\widehat{A}\left(chung\right)\)
\(\frac{AB}{AC}=\frac{AD}{AE}\)
\(=>\Delta ADE\)đồng dạng \(\Delta ABC\left(c-g-c\right)\)
c)Lưu Ý! Đề phải là DE cắt CB tại I
CM:
\(\widehat{IEB}=\widehat{AED}\)(đối đỉnh)
\(\widehat{AED}=\widehat{ACB}\)(tam giác ADE đồng dạng với tam giác ABC)
\(=>\widehat{IEB}=\widehat{ACB}\)
Lại có góc I chung
\(=>\Delta IBE\) đồng dạng với \(\Delta IDC\left(g-g\right)\)
d) từ c)=>\(\frac{IB}{ID}=\frac{IE}{IC}< =>ID.IE=IB.IC=\left(OI-OB\right)\left(OI+OC\right)\)
Mà OC=OB(gt)
\(=>ID.IE=\left(OI+OC\right)\left(OI-OC\right)=OI^2-OC^2\)
a) Xét ΔAEC và ΔADB có:
góc E1 = góc D1 ( =90o )
góc A : chung
=> Δ AEC ∼ Δ ADB ( g.g)
=>\(\frac{AE}{AC}=\frac{AD}{AB}\) => AD.AC = AE.AB ( đpcm)
b)
Ta có : ΔAEC ∼ Δ ADB ( cm a)
=>\(\frac{AD}{AB}=\frac{AE}{AC}\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\) ( 1 )
Xét ΔADE và ΔABC có:
góc A : chung
\(\frac{AD}{AE}=\frac{AB}{AC}\) ( theo (1))
=> ΔADE∼ΔABC ( c.g.c)
A B C D E 1 1