K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2022

Hình bạn tự vẽ

a, Nối M với N

Xét △BMN có:

BM=BN(gt)

=>△BMN cân tại B

=>∠BMN=(180- ∠B) / 2 (1)

Mà ∠BAC=(180- ∠B) / 2 (△ABC cân tại B) (2)

Từ (1) và (2) => ∠BMN=∠BAC (3)

Mà ∠BMN đồng vị ∠BAC (4)

Từ (3) và (4) => MN//AC

b, Xét △CMB và △ANB có

\(\left\{{}\begin{matrix}\text{AB = AC (△ABC cân tại B)}\\\text{∠ABC chung}\\\text{BM=BN}\left(gt\right)\end{matrix}\right.\)

=>△CMB = △ANB (c.g.c)

=> ∠BMC = ∠BNC

=>∠BMN + ∠CMN = ∠BNM + ∠MNA

Mà ∠BMN = ∠BNM (△BMN cân tại B)

=>∠BMN + ∠CMN = ∠BMN + ∠MNA

=> ∠CMN = ∠MNA

=> △IMN cân tại I

=> MI=NI (5)

Mà BM = BN (6)

Từ (5) và (6) => BI là đường trung trực của MN

=> BI ⊥ MN

Có gì không hiểu bạn cứ hỏi mình haha

 

 

A B C M N I E F

Bài làm

a) Xét tam giác AMN có:

AM = AN 

=> Tam giác AMN cân tại A.

b) Xét tam giác ABC cân tại A có:

\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\)                                            (1) 

Xét tam giác AMN cân tại A có:

\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\)                                         (2) 

Từ (1)(2) => \(\widehat{B}=\widehat{M}\)

Mà hai góc này ở vị trí đồng vị.

=> MN // BC

c) Xét tam giác ABN và tam giác ACM có:

AN = AM ( gt )

\(\widehat{A}\) chung

AB = AC ( Vì tam giác ABC cân )

=> Tam giác ABN = tam giác ACM ( c.g.c )

=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )

Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)

          \(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )

      \(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )

=> \(\widehat{IBC}=\widehat{ICB}\)

=> Tam giác BIC cân tại I

Vì MN // BC

=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )

     \(\widehat{NMI}=\widehat{ICB}\)( so le trong )

Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )

=> \(\widehat{MNI}=\widehat{NMI}\)

=> Tam giác MIN cân tại I

d) Xét tam giác cân AMN có:

E là trung điểm của MN

=> AE là trung tuyến  

=> AE là đường trung trực.

=> \(\widehat{AEN}=90^0\)                    (1) 

Xét tam giác cân MNI có:

E là trung điểm MN

=> IE là đường trung tuyến

=> IE là trung trực.                            

=> \(\widehat{IEN}=90^0\)        (2) 

Cộng (1)(2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng.                      (3) 

Xét tam giác cân BIC có:

F là trung điểm BC

=> IF là trung tuyến

=> IF là trung trực.

=> \(\widehat{IFC}=90^0\)                

Và MN // BC

Mà \(\widehat{IFC}=90^0\)

=> \(\widehat{IEN}=90^0\)

=> E,I,F thẳng hàng.             (4) 

Từ (3)(4) => A,E,I,F thẳng hàng. ( đpcm )

# Học tốt #

a: XétΔABH và ΔACH có 

AB=AC

AH chung

HB=HC

Do đó: ΔABH=ΔACH

8 tháng 12 2021

XétΔABH và ΔACH có 

 

AB=AC

 

AH chung

 

HB=HC

 

Do đó: ΔABH=ΔACH

28 tháng 2 2019

giúp mik ik ạk

3 tháng 2 2023

a) Xét ΔBMC và ΔCNB có :

          BM=CN ( AB=AC; AM=AN )

          góc B = góc C ( ΔABC cân tại A )

         BC : chung

suy ra : hai Δ trên bằng nhau theo trường hợp ( c-g-c )

suy ra : đpcm

b) chứng minh EBC cân nha em

Từ : ΔBMC = ΔCNB

suy ra : góc MCB = góc NBC ( 2 góc tương ứng )

suy ra : đpcm

c) ta có : ΔABC cân tại A

suy ra : góc B = góc C= \(\dfrac{180-A}{2}\) (1)

ta lại có : ΔAMN cân tại A 

suy ra : góc AMN = góc ANM = \(\dfrac{180-A}{2}\) (2)

Từ (1) và (2) suy ra đpcm do (các góc ở vị trí đồng vị và bằng nhau )

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

9 tháng 4 2015

\Delta CÓ NGHĨA LÀ TAM GIÁC NHÉ