K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

a) Vì tam giác ABC là tam giác cân nên tia phân giác của góc B cũng là đường cao của tam giác ABC => góc BMC = góc BMA

Xét tam giác BMA và tam giác BMC, ta có:

Góc BMA = góc BMC ( cmt )

AB = CB ( gt )

Góc ABM = Góc CBM ( gt )

Vậy tam giác BMA = tam giác BMC ( cạnh huyền góc nhọn )

b) Theo câu a đã chứng minh, tia phân giác của góc B cũng là đường cao của tam giác ABC. Vậy góc BMC = góc BMA

c) Câu này chắc AB = 8cm mà bạn ghi nhầm AC = 8cm

Áp dụng đính lý Pi - ta - go vào tam giác ABM, ta có:

AM2 + BM2 = AB2

52 + BM2 = 82

BM2 = 82 - 52

BM2 = 39

BM gần = 6

14 tháng 5 2016

a) Do tam giác ABC cân tại B và BM là đường phân giác của góc B nên

BM là đường cao,đường trung tuyến,và đường trung trực của,đường cao của tam giác ABC(tính chất tam giác cân)

Xét tam giác BMA và tam giác BMC có

BA=BC(vì tam giác ABC cân tại B)

Góc BMA=góc BMC=90 độ(vì BM là đường cao của tam giác ABC)

Cạnh chung BM

Suy ra tam giác BMA= tam giác BMC(cạnh huyền-cạnh góc vuông)

b) Vì BM là đường cao của tam giác ABC nên

Góc BMA=BMC=90 độ

c) Do BM là đường trung trực của tam giác ABC nên(cmt ở câu a)

Nên AM=CM=8:2=4 CM

Áp dụng định lí Py-ta-go vào tam giác vuông ABM có

AB^2=AM^2+BM^2

Hay 5^2+BM^2=8^2

25+BM^2=64

BM^2=64-25=39

BM= căn bậc hai của 39=xấp xỉ 6

Vậy BM=~6

a: góc B=90-30=60 độ

b: Xét ΔBAM vuông tại A và ΔBHM vuông tại H có

BM chung

góc ABM=góc HBM

=>ΔBAM=ΔBHM

c: Xét ΔBAH có BA=BH và góc ABH=60 độ

nên ΔABH đều

d: Xét ΔMBC có góc MBC=góc MCB=30 độ

nên ΔMBC cân tại M

e: BA=BH

MA=MH

=>BM là trung trực của AH

22 tháng 4 2017

mình cũng trùng bài này nhưng ko pít làm huhu

22 tháng 4 2017

nhớ tk cho ming nha 

A C B M H N

1, Xét tam giác ABC có :

\(BC^2=AC^2+AB^2\)

\(\Leftrightarrow BC^2=4^2+3^2\)

\(\Leftrightarrow BC^2=25\)

\(\Leftrightarrow BC=5\left(cm\right)\)

2,Ta có :\(\widehat{BMA}+\widehat{MBA}=90^O\)

\(\widehat{BMH}+\widehat{MBH}=90^O\)

MÀ \(\widehat{ABM}=\widehat{HBM}\)

Nên \(\widehat{BMA}=\widehat{BMH}\)

Xét tam giác ABM và tam giác HBM có :

\(\widehat{ABM}=\widehat{HBM}\left(gt\right)\)

\(BMchung\)

\(\widehat{BMA}=\widehat{BMH}\)

\(\Rightarrow\Delta BAM=\Delta BHM\left(c.g.c\right)\)

3,Vì \(\Delta BAM=\Delta BHM\Rightarrow AM=MH\left(1\right)\)

Xét \(\Delta HMC\)có :

\(\widehat{MHC}=90^0\)

Suy ra :MC>MH(2)

Từ (1) và(2):AM<MC

4,Ta có :\(\widehat{AMH}+\widehat{HMC}=180^0\left(1\right)\)

Xét tam giác NMA và tam giác CMH có:

\(HC=NA\)

\(\widehat{NAM}=\widehat{CHM}\)

\(MA=MH\left(\Delta BAM=\Delta BHM\right)\)

\(\Rightarrow\Delta NMA=\Delta CMH\left(c.g.c\right)\)

\(\Rightarrow\widehat{NMA}=\widehat{CMH}\)(2)

Từ (1) và(2) : => N,M,H thẳng hàng

a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)

\(\widehat{BMD}+\widehat{DBM}=90^0\)

mà \(\widehat{ABM}=\widehat{DBM}\)

nên \(\widehat{BMA}=\widehat{BMD}\)

c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có 

BM chung

\(\widehat{ABM}=\widehat{DBM}\)

Do đó: ΔBAM=ΔBDM

Suy ra: MA=MD

Xét ΔAME vuông tại A và ΔDMC vuông tại D có 

MA=MD

\(\widehat{AME}=\widehat{DMC}\)

Do đó: ΔAME=ΔDMC