Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
@trần thị giang : thì mình KHÔNG hỏi bạn, nếu ai biết thì trả lời, CÂM ĐƯỢC RỒI
TU VE HINH NHA
CÓ TAM GIÁC ABC VUÔNG TẠI A :
=>AB=AC( DN TAM GIÁC CÂN)
a) XÉT TAM GIÁC ABH VUÔNG TẠI H VÀ TAM GIÁC ACH VUÔNG TẠI H CÓ:
AB=AC( CMT)
AH CHUNG
=> TAM GIÁC AHB = TAM GIAC AHC( CH- CGV)
b)TAM GIÁC AHB= TAM GIÁC AHC (CM Ở CÂU a)
=>GÓC BAH = GÓC CAH(2 GÓC TƯƠNG ỨNG)
XÉT TAM GIÁC AMH VUÔNG TẠI M VÀ TÂM GIC ANH VUÔNG TẠI N CÓ:
GÓC BAH= GÓC CAH(CMT)
AH CHUNG
=> TAM GIÁC AMH = TAM GIÁC ANH( CH- GN)
=>AM=AN( 2 CÁNH TUONG ỨNG)
=>TAM GIAC AMN CÂN TẠI A( DN TAM GIAC CAN )
K CHO M NHA
a, Xét tam giác AHB và tam giác AHC có
AH _ chung
AB = AC
Vậy tam giác AHB~ tam giác AHC (ch-cgv)
Ta có tam giác ABC cân tại A, có AH là đường cao
đồng thười là đường pg
b, Xét tam giác AMH và tam giác NAH có
HA _ chung
^MAH = ^NAH
Vậy tam giác AMH = tam giác NAH (ch-gn)
=> AM = AN ( 2 cạnh tương ứng )
c, Ta có AM/AB = AN/AC => MN // BC
d, Ta có \(AH^2+BM^2=AN^2+BH^2\)
Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)
Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)
Lại có AM = AN (cmt)
\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M)
Vậy ta có đpcm
a) xét tam giác ABH và tam giác AHC có
AB=AC( tam giác ABC cân tại A)
BHA=CHA=\(90^0\)( \(AH\perp BC\))
AH là cạnh chung
Do đó tam giác ABH = tam giác AHC( cạnh huyền- cạnh góc vuông)
A B C M N H 1 2
b) có Tam giác ABH = tam giác AHC (cmt)
\(\Rightarrow\)A1=A2( 2 góc tương ứng)
xét tam giác AMH và tam giác ANH có
A!=A2( cmt)
AH là cạnh chung
AMH=ANH=\(90^0\) ( HM vuông góc với AB,HN vuông góc với AC)
Do đó tam giác AMH và tam giác ANH( cạnh huyền góc nhọn)
\(\Rightarrow\)AM=AN( 2 cạnh tương ứng)
\(\Rightarrow\)tam giác AMN cân tại A(ĐN)
B B C C H H A A M M N N
a) Xét hai tam giác vuông AHB và AHC có:
Cạnh AH chung
AB = AC (Tam giác ABC cân tại A)
\(\Rightarrow\Delta AHB=\Delta AHC\) (Cạnh huyền - cạnh góc vuông)
b) Do \(\Delta AHB=\Delta AHC\Rightarrow\widehat{MAH}=\widehat{NAH}\)
Xét hai tam giác vuông AMH và ANH có:
Cạnh AH chung
\(\widehat{MAH}=\widehat{NAH}\)
\(\Rightarrow\Delta AMH=\Delta ANH\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AM=AN\)
c) Xét tam giác AMN cân tại A nên \(\widehat{AMN}=\frac{180^o-\widehat{BAC}}{2}\)
Tam giác ABC cũng cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)
Suy ra \(\widehat{AMN}=\widehat{ABC}\)
Chúng lại ở vị trí đồng vị nên MN // BC.
d) Xét hai tam giác vuông BMH và CNH có:
BH = CH (Do \(\Delta AHB=\Delta AHC\))
\(\widehat{MBH}=\widehat{NCH}\)
\(\Rightarrow\Delta BMH=\Delta CNH\) (Cạnh huyền - góc nhọn)
\(\Rightarrow MH=NH\)
\(\Rightarrow MH^2=NH^2\Rightarrow BH^2-MB^2=AH^2-AN^2\)
\(AH^2+BM^2=AN^2+BH^2\)
a,xét tam giac AHB va AHC.Ta có
góc AHB=góc AHC (vi = 90 độ)
cạnh AB=AC(vì ABC cân tại A)
góc B=góc C (vì ABC cân tại A)
-> tam giác AHB=AHC (cạnh huyền-góc nhọn)
-> goc MAH=gocNAH
b, xét tam giac AMH va ANH. có
goc ANH=góc AMH (90 độ)
cạnh AH chung
goc MAH=goc NAH(cm trên)
->tam giac AMH=ANH (cạnh huyền góc nhọn)
->AM=AN
->AMN là tam giác cân tại A