K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

A B C E M D

b.ta có M là trung điểm NC nên MC=MB

ta lại có N là trung điểm MB => MN=NB

vậy MC=\(\frac{2}{3}\)MN

xét tgac ACD có NC là đường trung tuyến ứng với cạnh AD

mà M thuộc CN và MC=\(\frac{2}{3}\)MN nên theo định nghĩa M là trọng tâm tgiac ACD

mặt khác E là trung điểm CD vậy AE là đường trung tuyến ứng với CD vậy A; M;E thẳng hàng

18 tháng 5 2022

a.Ta có:BM=CM=BC2BC2=102102=5(cm)

Vì AM là trung tuyến 

=>AM là đường cao

Xét ΔABM vuông tại M có:

AB2=AM2+MB2(định lý pytago)

Hay:132=AM2+52

169=AM2+25

AM2=144144

AM=12(cm)

b.ta có M là trung điểm NC nên MC=MB

ta lại có N là trung điểm MB => MN=NB

vậy MC=2323MN

xét tgac ACD có NC là đường trung tuyến ứng với cạnh AD

mà M thuộc CN và MC=2323MN nên theo định nghĩa M là trọng tâm tgiac ACD

mặt khác E là trung điểm CD vậy AE là đường trung tuyến ứng với CD vậy A; M;E thẳng hàng

23 tháng 4 2016

tam giác NAB= tam giác NDM (c.g.c);

nên AB song song DM;

từ đó suy ra AM song song  BD (1);

xét tam giác BDC có

     M là trung điểm BC

    E là trung điểm DC

suy ra ME song song BD (2)

từ  (1) và (2)

suy ra A,M,E thẳng hàng.

20 tháng 4 2019

a, Xét tam giác ABM và tam giác ACM có

AB=AC(gt)

BM=CM(gt)

^ABC=^ACB(gt)

=> tam giác ABM= tam giác ACM(c-g-c)

=> ^AMB=^AMC(2 g tương ứng)

=> ^AMB=^AMC=180 độ /2 =90 độ

hay AM vuông góc vs BC

20 tháng 4 2019

b, Ta có: BM=MC=1/2 BC=5

Áp dụng đly pitago vào tam giác vuông ABM có:

AM^2=AB^2-BM^2=13^2-5^2=144

=> AM=12

20 tháng 5 2021

\(a)\)

\(\text{Ta có}:\)

\(\Delta ABC\)\(\text{vuông tại}\)\(A\)

\(\rightarrow BC^2=AB^2+AC^2\)

\(\rightarrow AC^2=BC^2-AB^2\)

\(\rightarrow AC^2=15^2-9^2\)

\(\rightarrow AC^2=144\)

\(\rightarrow AC=12\)

\(\rightarrow AB< AC< BC\)

\(\rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)

\(\text{Ta có:}\)

\(AB\perp AC\rightarrow\widehat{BAC}=\widehat{EAC}\)

\(\rightarrow AB=AE\rightarrow A\)\(\text{là trung điểm}\)\(BE\)

\(b)\)

\(\text{Theo phần a), ta có:}\)\(AB=AE\rightarrow A\text{ }\)\(\text{là trung điểm}\)\(BE\)
\(\rightarrow CA\)\(\text{là trung tuyến}\)\(\Delta CBE\)

\(\text{Mà}\)\(BH\)\(\text{là trung tuyến}\)\(\Delta BCE\)\(,\)\(BH\text{∩}\text{ }CA=M\)

\(\rightarrow M\text{ }\)\(\text{là trọng tâm}\)\(\Delta BCE\)

\(\rightarrow CM=\frac{2}{3}CA\)

\(\rightarrow CM=8\)

\(c)\)

\(\text{Theo phần a)}\)\(\rightarrow\widehat{ECA}=\widehat{ACB}\)

                         \(\rightarrow\widehat{CEA}=\widehat{CBA}\)

\(\text{Do}\)\(AK//CE\rightarrow\widehat{KAB}=\widehat{AEC}=\widehat{CBA}=\widehat{KBA}\rightarrow KB=KA\)

         \(\widehat{KAC}=\widehat{ECA}=\widehat{ACB}=\widehat{ACK}\rightarrow KA=KC\)

         \(\rightarrow KB=KC\rightarrow K\)\(\text{là trung điểm}\)\(BC\)

\(\text{Mà}\)\(M\)\(\text{là trọng tâm}\)\(\Delta CBE\rightarrow E,MK\)\(\text{thẳng hàng}\)

20 tháng 5 2021

C B A H K M E