K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

Gọi giao điểm cua BP và AR là S

Xét tam giác BPH có:

BH=PH(giả thiết)

 góc BHP=90"(vì AH là đường cao)

=>tam giác BHP vuông cân tại H=>góc BPH=45'=>góc APS=45"   (1)

Tương tự ta cũng có tam giác AHR vuông cân tại H=>góc HAS=45"  (2)

Cộng từng về của (1) và (2) =>góc ASP=90"

Hay BP vông góc với AR

Xét tam giác BAR có

BP vuông góc với AR(cmt)

AH vuông góc Với BC(giả thiết)

BP cắt AH tại P=>P là trực tâm của tam giác BAR

17 tháng 5 2018

Hình vẽ: https://imgur.com/4l52wae

Giải:

Gọi G là gio điểm của BP và AR

Góc AHR = 90 độ mà HA = HR nên tam giác HAR vuông cân tại H => góc HAR = góc HRA = 45 độ

Góc PHB = 90 độ mà HP = HB nên tam giác HPB vuông cân tại H => góc HPB = góc HBP = 45 độ

Mà góc APG = góc HPB (đối đỉnh) nên góc APG = 45 độ

=> góc AGP = 180 - 45 - 45 = 90 (độ) 

=> BG là đường cao của tm giác ABR 

Mà BG cắt AH tại P nên P là trực tâm tam giác BAR

5 tháng 5 2017

A B C D H I P Q

a) Xét \(\Delta\)AHC: ^AHC=90\(^0\)và AH=HC => \(\Delta\)AHC vuông cân tại H 

 => ^HAC=^HCA=45\(^0\)hay ^DCB=45\(^0\)(1)

  Xét \(\Delta\)BHI: ^BHI=90\(^0\)và HB=HI => \(\Delta\)BHI vuông cân tại H

=> ^HBI=^HIB=45\(^0\)hay ^DBC=45\(^0\)(2)

Từ (1) và (2) => ^DCB=^DBC=45\(^0\)=> \(\Delta\)BDC vuông cân tại D

=> BD \(⊥\)AC hay IB \(⊥\)AC tại D (đpcm)

 => BD là đường cao của \(\Delta\)ABC

 AH cũng là đường cao của \(\Delta\)ABC . Mà BD gia AH tại I => I là trọng tâm của \(\Delta\)ABC

b) Nối điểm H với 2 điểm P và Q

Q là trung điểm của AC => HQ là trung tuyến của \(\Delta\)AHC. Mà \(\Delta\)AHC vuông cân

=> HQ đồng thời là đường cao của \(\Delta\)AHC=> HQ \(⊥\)AC .Mà BD \(⊥\)AC

=> HQ // BD hay HQ // PD (P thuộc BD) (Quan hệ song song vuông góc)

Tương tự: P là trung điểm của BI và \(\Delta\)BHI vuông cân tại H

=> HP là đường cao của \(\Delta\)BHI => HP\(⊥\)BD. Mà DC\(⊥\)BD tại D => HP//DC (Quan hệ song song vuông góc)

=> HP//DQ (Q thuộc  DC)

Ta có: HQ//PD và HP//DQ => HQ=PD và HP=DQ (Tính chất đoạn chắn)

Lại có: HQ đồng thời là đường phân giác của \(\Delta\)AHC=> ^QHA=^QHC=^AHC/2=90\(^0\)/2=45\(^0\)

Mà ^QCH=45\(^0\)=> ^QHC=^QCH=45\(^0\)=> \(\Delta\)HQC vuông cân tại Q => QC=HQ (3)

Tương tự với \(\Delta\)BHI có: \(\Delta\)BHP vuông cân tại P=> PH=BP (4)

Ta có: PD+BP=BD (5) 

Thế (3) và (4) vào (5), ta có: QC+PH=BD (đpcm) 

k cho mk nhé!

6 tháng 5 2017

Câu a và b mình trả lời hộ bạn rùi. Bây giờ mình sẽ giải câu c.

A B C H N M K

Trên cạnh AB lấy điểm M sao cho BM=BH. Trên AH lấy điểm K sao cho HK=HN. Nối M với K và H.

Xét tam giác MNH: ^MNH=900 => ^NMH+^NHM=900 (1)

Lại có: ^KHM+^BHM=^KHB=900 . Mà BM=BH => Tam giác HBM cân tại B 

=> ^BHM=^BMH => ^KHM+^BMH=900 (Thay vào biểu thức trên) hay ^KHM+^NMH=900 (2)

Từ (1) và (2) => ^NMH+^NHM=^KHM+^NMH=900 => ^NHM=^KHM=900-^NMH

Xét tam giác MNH và tam giác MKH có:

Cạnh MH chung

^NHM=^KHM       => Tam giác MNH=Tam giác MKH (c.g.c)

HN=HK

=> MNH=^MKH (2 góc tương ứng) . Mà MNH=900 => ^MKH=900 

MK vuông góc với AH => Tam giác MAK vuông tại K

=> AM là cạnh lớn nhất trong tam giác MAK (Quan hệ giữa góc và cạnh đối diện trong tam giác)

=> AM>AK => AB-BM>AH-HK (3) (Hệ thức cộng trừ đoạn thẳng)

Thay BM=BH và HK=HN theo cách vẽ vào (3), ta có:

AB-BH>AH-HN <=> AB>AH-HN+BH <=> HN+AB>AH+BH (Chuyển vế đổi dấu) (4)

Thay AH=HC vào (4), ta có: HN+AB>HC+HB => HN+AB>BC (đpcm)

--End--

  \(\Delta\)

a: Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔABI có 
AH là đường cao

AH là đường trung tuyến

Do đó: ΔABI cân tại A

29 tháng 1 2022

A B C M H

a. xét tam giác vuông ABH và tam giác vuông AMH có:

BH = MH ( gt )

AM: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông AMH ( 2 cạnh góc vuông )

=> AB = AC ( 2 cạnh tương ứng )

=> ABC cân tại A

b. áp dụng định lý pitago vào tam giác vuông AHC có:

\(AC^2=AH^2+HC^2\)

\(5^2=3^2+HC^2\)

=>\(HC=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)

c. ta có :

AE = AF ( gt ) => tam giác AEF cân tại A

ta có : AH là đường cao của tam giác ABM cũng là đường cao tam giác AEF

=> EF vuông AH

Mà BC cũng vuông AH

=> EF // BC ( 2 cạnh cùng vuông với cạnh thứ 3 )

 

a: XétΔAIB vuông tại I và ΔAIC vuông tại I có

AB=AC

AI chung

=>ΔAIB=ΔAIC

b: Xét ΔCIE có

CH vừa là đường cao, vừa là trung tuyến

=>ΔCIE cân tại C