K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

B1:

a) xét 2 tam giác vuông ABH và ACK có:

             góc BAC chung

          AB = AC (gt)

         góc ABH = góc ACK (cùng phụ vs góc ABC)

=> tam giác ABH = tam giác ACK (g.c.g)

b) tam giác ABH = tam giác ACK (câu a)

=> AK = AH mà AB = AC = AK + BK = AH + CH => BK = CH (1)

do AK = AH => tam giác AKH cân tại A => góc AKH = góc AHK = (1800 - góc BAC) : 2 (*)

ta có: góc ABC = góc ACB = (1800 - góc BAC ) : 2 (**)

từ (*) và (**) => góc ABC = góc AKH (đồng vị ) => BC // KH (2)

từ (1) và (2) => tứ giác BCHK là hình thang đều

t i c k nhé!! 3543645767658587687689698797808657568568

8 tháng 8 2017

Hih e tự vẽ nha:

a) Vì DM//BE nên tứ giác BDME là hình thang.

Lại có :\(\widehat{B}=\widehat{C}=60\)( tam giác ABC đều)

và \(\widehat{BEM}=\widehat{C}=60\)(Vì DE//AC và ACB=90 độ)

=>\(\widehat{BEM}=\widehat{B}=60\)

=>Tứ giác BDME là htc.

T/tự cho các hình còn lại.

b)Xét tam giác BDM và EMD:

BD=ME( BDME là htc)

góc BDM=góc EMD(Vì DM//BE và góc BEM=góc B=60 độ)

DM là cah chug

=> tg BDM=tg EMD (cgc)

=>BM=DE

C/m t/tự đối vói các tg AFD=AMF; tg CEM=tg FME

=> AM=DF;CM=EF

=>BM+AM+CM=DE+DF+EF= Chu vi của tam giác DEF

c) Ở câu a/ ta đã có góc B= góc E=60 nên suy ra đc các góc còn lại của htc BDME bằng 120 độ

T/tự cho 2 htc còn lại suy ra đc cả 3 góc đều =120 độ nên chúng = nhau

9 tháng 8 2017

M A B C D E F

a, Chứng minh các tứ giác BDME,CFME,ADMF là các hình hang cân.

Ta có : MD//BC\(\Rightarrow\)BDME là hình thang cân .(1)

ME//AC\(\Rightarrow\widehat{MEB}=\widehat{ACB}\)(hai góc đồng vị )

mà \(\widehat{ACB}=\widehat{ABC}=60^o\)(do tam giác ABC đều)

\(\Rightarrow\widehat{MEB}=\widehat{ABC}=60^o\)(2)

Từ (1) và (2) => tứ giác  BDME là hình thang cân.

Chứng minh tương tự ta cũng có : tứ giác CFME và ADMF là các hình thang cân.

b,Chứng minh chu vi của tam giác DEF bằng tổng các khoảng cách từ M đến các đỉnh của tam giác ABC . \(\left(P_{DME}=MB+MA+MC\right)\)

Ta có : \(P_{DEF}=DE+DF+EF\)

Lại có tứ giác BDME là hình thang cân (cmt) => DE = MB.

          tứ giác  CFME là hình thang cân (cmt)=> MC=EF

          tứ giác DMF là hình thang cân (cmt)=> MA =DF.

\(\Rightarrow P_{DEF}=MA+MB+MC\)

=> đpcm.

c,Chứng minh \(\widehat{DME}=\widehat{DMF}=\widehat{EMF}\)

Trong hình thang cân BDME có : \(\widehat{DBE}=60^o\)

mà \(\widehat{DME}+\widehat{DBE}=180^o\Rightarrow\widehat{DME}=180^o-\widehat{DBE}=180^o-60^o=120^o\)

Chứng minh tương tự ta có : \(\widehat{DMF}=120^o;\widehat{EMF}=120^o\)

=>\(\widehat{DME}=\widehat{DMF}=\widehat{EMF}=120^o\)(đpcm)

Mình giải chi tiết rùi đấy nhé nếu có j hk hiểu cứ nhắn tin cho mk mk sẽ giải thích cho nhé.

Nên nhớ hình vẽ chỉ mang tính chất minh họa . Mình vẽ hình cho mấy bạn  nhìn vô cho dể hiểu thôi chứ chưa chuẩn lắm đâu mấy bạn tự vẽ hình cho đẹp nhé ai thấy hay thì k cho mk nhé . CẢM ƠN NHIỀU .

19 tháng 8 2017


a) Phần thuận :

Theo đề bài MD // AC, ME // AB (gt) nên tứ giác ADME là hình bình hành.

Do I là trung điểm của DE (gt), do đó I là trung điểm của AM.

Kẻ ,  thì IK // AH.

Trong tam giác MAH, IK là đường trung bình nên IK = AH.

Vì 

...chịu