K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2019

Họ và tên của ông giống tui thế

21 tháng 3 2019

a, Tam giác ABC có AB=AC (gt)

=> ∆ ABC cân tại A ( tính chất tam giác cân )

       do đó góc B = góc C ( hai góc ở đáy )

  Ta có : góc ABC = góc ECN ( hai góc đối đỉnh )

Xet ∆ vg BDM va ∆ vg CEN co :

      BD=CE ( gt )

       góc ABD = góc ECN ( cùng bằng góc ACB ) 

=> ∆  vuông góc BDM = ∆ vuông góc ECN ( cạnh góc vuông và góc nhọn kề cạnh ấy )

  Do đó DM = EN  ( hai cạnh tương ứng )

b) Ta có: MD vuông góc với BE

              BE vuông góc với EN

=>MD//EN => góc DMI = góc INE(so le trong)

Xét ∆ MDI và ∆ IEN ta có:

MD=EN(vì ∆ MBD = ∆ CEN)

góc MDI = góc IEN(=90 độ)

góc DMI = góc INE(cmt)

=>∆ MDI = ∆ IEN(CGV-GN)

=>IM=IN(ctư)

=>đường thẳng BC cắt MN tại trung điểm I của MN

c)Từ B và C kẻ các đường thẳng lần lượt vuông góc với AB và AC cắt nhau tại K

H là chân đường vuông góc kẻ từ A xuống BC

Xét ∆ ABK và ∆ ACK có 

AK là cạnh chung

AB=AC(cmt)

Góc BAK=góc KAC

suy ra tam giác ABK = tam giác ACK (c-g-c)

suy ra KB=KC nên K € AH đường trung trực của BC

Mặt khác :Từ ∆ DMB= ∆ ENC(câu a)

Ta có : BM=CN

            BK=CK(cmt)

            góc MBK=góc NCK=90 độ

Nên ∆ BMK = tam giác CNK(c-g-c)

suy ra MK=NK hay đường trung trực của MN luôn đi qua điểm K cố định (đpcm)

Do dài mình viết tắc nhìu. Bạn thông cảm

Bạn vào YouTube và đăng kí kênh nha. Kênh tên là CT CATTER

CHÚC BẠN HỌC TỐT!!!!!

Tk cho mình nha

Chúc bạn học tốt

a: Xét ΔMBD vuông tại D và ΔNCE vuông tại E có 

DB=CE

\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACB}\right)\)

Do đó: ΔMBD=ΔNCE

Suy ra: DM=EN

1 tháng 2 2017

vẽ hình dùm mk nha bạn

1 tháng 2 2017

Nhưng mik ko bít lm thì mí hỏi chớ lm sao mà mik bít vẽ hình

7 tháng 3 2018

(Cái này là mình giải trong trường hợp AM là tia đối của AB nhé)

a)  Tam giác ABC cân tại A => ABC= ACB

Mà ACB= ECN(đối đỉnh) => ABC= ECN

Xét tam giác BMD và tam giác CNE có :

BDM=CEN(=900);BD=CE(GT);ABC=ECN(chứng minh trên)

Do đó tam giác BMD=tam giác CNE(g.c.g)=>MD=NE(2 cạnh tương ứng) (đpcm)

b)Vì MDE=CEN(=900)=>MD//EN(Do có 1 cặp góc bằng nhau ở vị trí SLT)

=>DMN=ENM(cặp góc SLT)

Xét tam giác DMI và tam giác ENI có :

DMN=ENM(c/m trên);MD=NE(đã c/m ở câu a);BMD=IEN(=900)

Do đó tam giác DMI= tam giác ENI(g.c.g)=>MI=NI(2 cạnh tương ứng)

Mà I nằm giữa M và N => I là TĐ của MN 

Hay BC cắt MN tại TĐ I của MN.

(câu c mk ko bít làm)