\(\perp AB\) E
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

3 tháng 8 2021

bạn tự vẽ hình nhé

Nối AM. Ta có ˆHEF=180o−ˆAEF=180o−2ˆEMH=2(90o−ˆEMH)=2ˆHEMHEF^=180o−AEF^=180o−2EMH^=2(90o−EMH^)=2HEM^(Tam giác EMH vuông tại H)

Suy ra:ˆHEF=2ˆHEMHEF^=2HEM^=> EM là tia phân giác của góc ˆHEFHEF^ hay là tia phân giác góc ngoài của tam giác ΔAEFΔAEF tại E

Ta có: ΔABCΔABC cân tại A có M là trung điểm của BC(gt) => AM đồng thời là đường phân giác góc ˆBACBAC^

Xét ΔAEFΔAEFcó AM là đường phân giác của góc ˆBACBAC^và EM là đường phân giác góc ngoài của ΔAEFΔAEFtại E, 2 tia phân giác này cắt nhau tại M => M là giao điểm của 3 đường phân giác trong ΔAEFΔAEF(1 tia phân giác trong và 2 tia phân giác ngoài)

=> FM cũng là tia phân giác góc ngoài của ΔAEFΔAEFtại  hay là tia phân giác của góc EFC

Vậy: FM là tia phân giác của góc EFC (đpcm)

19 tháng 4 2022

Nối AM. Ta có (Tam giác EMH vuông tại H)

Suy ra:ˆHEF=2ˆHEMHEF^=2HEM^=> EM là tia phân giác của góc ˆHEFHEF^ hay là tia phân giác góc ngoài của tam giác ΔAEFΔAEF tại E

Ta có: ΔABCΔABC cân tại A có M là trung điểm của BC(gt) => AM đồng thời là đường phân giác góc ˆBACBAC^

Xét ΔAEFΔAEFcó AM là đường phân giác của góc ˆBACBAC^và EM là đường phân giác góc ngoài của ΔAEFΔAEFtại E, 2 tia phân giác này cắt nhau tại M => M là giao điểm của 3 đường phân giác trong ΔAEFΔAEF(1 tia phân giác trong và 2 tia phân giác ngoài)

=> FM cũng là tia phân giác góc ngoài của ΔAEFΔAEFtại  hay là tia phân giác của góc EFC

Vậy: FM là tia phân giác của góc EFC (đpcm)

5 tháng 4 2017

Mình không biết! Khó thật! Mà mình cũng chưa tới lớp 7 nên cũng không thể giải cho bạn được! thông cảm nha!

Nhớ tk mình

21 tháng 4 2018

Khó quá mình không biết giải

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau