K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

Gọi O là trung điểm hay giao đ của BH và CK

3 tháng 2 2017

là giao điểm phải ko bn @Trần Việt Linh

25 tháng 1 2017

A B C D H K M N O

tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB

ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)

suy ra AM = AN ( 2 cạnh tương ứng )

tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân

b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )

dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )

suy ra BA = Ck ( 2 cạnh tương ứng ) 

c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân

\(\Delta AHK\)và  \(\Delta AMN\) có chung đỉnh

mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)

mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN

d) kéo dài HB và CK cắt nhau tại O

nối AO

xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)

AO là cạnh huyền chung

AH = AK

do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )

e) xét tam giác \(BAD\)và \(\Delta CAD\)

BA = CA ( tam giác ABC cân tại A )

DA = DC (gt)

AD là canh chung 

do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)

phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã

26 tháng 1 2017

tiếp nhé

suy ra góc BAD = góc CAD ( 2 góc tương ứng )

vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)

ta có BH = CK ( cmt)

và HO = KO (cmt)

suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )

hay BO = OC

xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)

do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)

suy ra góc BAO = góc CAO ( 2 góc tương ứng )

vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)

từ (1) và (2) suy ra A;D;O thẳng hàng 

31 tháng 5 2017

Hình vẽ:

A B C K H O 1 2 1 2

Giải:

Xét \(\Delta ABH\)\(\Delta ACK\) có:

\(AH=AK\left(gt\right)\)

\(\widehat{A}\) là góc chung

\(AB=AC\) ( Vì \(\Delta ABC\) cân tại \(A\) )

Do đó: \(\Delta ABH=\Delta ACK\left(c.g.c\right)\)

\(\Rightarrow\widehat{B_2}=\widehat{C_2}\) ( cặp góc tương ứng )

\(\widehat{B}=\widehat{C}\) ( Do \(\Delta ABC\) cân tại \(A\) )

\(\Rightarrow\widehat{B}-\widehat{B_2}=\widehat{C}-\widehat{C_2}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)

\(\Rightarrow\Delta OBC\) cân tại \(O\) . \(\left(đpcm\right)\)

24 tháng 2 2018

a) Tam giác ABC cân nên hai góc đáy bằng nhau : Góc ACB = Góc ABC 
Ta lại có : Góc ABM = 180° - Góc ABC , Góc ACN = 180° - Góc ACB 
Vậy Góc ABM = Góc ACN 
Xét hai tam giác ABM và CAN , ta có : 
AB = AC (gt) 
Góc ABM = Góc ACN (cmt) 
BM = CN (gt) 
=> Tam giác ABM = tam giác CAN => AM = AN 
Vậy tam giác AMN là tam giác cân tại A 
b) Vì tam giác AMN cân => Góc AMB = Góc ANC 
Xét tam giác MHB và tam giác CKN 
Ta có : Góc MHB = Góc CKN ( Góc vuông ) 
Góc AMB = Góc ANC (cmt) 
MB = CN (cmt) 
=> tam giác MHB = tam giác NKC (g-c-g) 
=> BH = CK 
c) làm tương tự câu b 
d) Tam giác ABM = Tam giác CKN => Góc HBM = Góc KCN 
Góc CBO = Góc HBM và Góc KCN = Góc BCO ( đối đỉnh ) 
=> OBC là tam giác cân tại O 
e) Khi BAC = 60° => Tam giác ABC đều 
ta suy ra BM = AB => Tam giác ABM cân đỉnh B . Ta có Góc AMB = 1/2 ABC = 1/2 . 60 = 30° 
Làm tương tự cho góc kia thì ANM = 30° 
Góc  = 180 - 30° - 30° = 120° 
Góc KCN = Góc BCO =60° 
bn tham khảo!

Xét ΔGBC và ΔHCB có 

GB=HC

\(\widehat{GBC}=\widehat{HCB}\)

BC chung

Do đó: ΔGBC=ΔHCB

Suy ra: \(\widehat{OCB}=\widehat{OBC}\)

hay ΔOBC cân tại O

27 tháng 1 2022

ko đúng đề bạn êy

 

14 tháng 1 2019

a) Xét tam giác BKC và tam giác CHB

+ BC chung 

+ BK = HC vì AB = AC ; AK = AH => AB-AK=AC-AH

+ góc ABC = góc HCB  (tam giác ABC cân)

Vậy tam giác BKC = tam giác CHB (c.g.c)

Và góc BKC = góc CHB

\(\widehat{KOB}=\widehat{HOC}\)(đối đỉnh)

\(\widehat{BKO}=\widehat{CHO}\left(cmt\right)\)

\(\Rightarrow\widehat{KBO}=\widehat{HCO}\)(3 góc trong tam giác)

Xét \(\Delta OKB\)và \(\Delta OHC\)

+ BK = HC

\(\widehat{KBO}=\widehat{OCH}\)

\(\widehat{OKB}=\widehat{OHC}\)

Vậy \(\Delta OKB=\Delta OHC\left(g.c.g\right)\)

VÀ OH = OK (hai cạnh tương ứng ) => Tam giác OKH cân tại O

OB = OC (hai cạnh tương ứng) => Tam giác OBC cân tại O 

c) Xét \(\Delta AKO\)và \(\Delta AHO\)

+ AO chung

+ OK = OH

+ AH = AK

\(\Rightarrow\Delta AKO=\Delta AHO\left(c.c.c\right)\)

=> Góc KAO = góc HAO

Gọi giao điểm của KH và AO là F

Xét tam giác AFK và tam giác AFH

+ AK = AH

+ ÀF chung

+góc KAF = góc HAF (cmt)

Vậy tam giác AFK = tam giác AFH (c.g.c)

Và KF = FH(hai cạnh tương ứng)

Hay AO đi qua trung điểm của HK

13 tháng 8 2017

bn cho nhìu wá

13 tháng 8 2017

@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha