Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H K M N O
tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB
ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)
suy ra AM = AN ( 2 cạnh tương ứng )
tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân
b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )
dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )
suy ra BA = Ck ( 2 cạnh tương ứng )
c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân
\(\Delta AHK\)và \(\Delta AMN\) có chung đỉnh
mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)
mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN
d) kéo dài HB và CK cắt nhau tại O
nối AO
xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)có
AO là cạnh huyền chung
AH = AK
do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )
e) xét tam giác \(BAD\)và \(\Delta CAD\)có
BA = CA ( tam giác ABC cân tại A )
DA = DC (gt)
AD là canh chung
do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)
phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã
tiếp nhé
suy ra góc BAD = góc CAD ( 2 góc tương ứng )
vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)
ta có BH = CK ( cmt)
và HO = KO (cmt)
suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )
hay BO = OC
xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)
do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)
suy ra góc BAO = góc CAO ( 2 góc tương ứng )
vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)
từ (1) và (2) suy ra A;D;O thẳng hàng
Hình vẽ:
A B C K H O 1 2 1 2
Giải:
Xét \(\Delta ABH\) và \(\Delta ACK\) có:
\(AH=AK\left(gt\right)\)
\(\widehat{A}\) là góc chung
\(AB=AC\) ( Vì \(\Delta ABC\) cân tại \(A\) )
Do đó: \(\Delta ABH=\Delta ACK\left(c.g.c\right)\)
\(\Rightarrow\widehat{B_2}=\widehat{C_2}\) ( cặp góc tương ứng )
Mà \(\widehat{B}=\widehat{C}\) ( Do \(\Delta ABC\) cân tại \(A\) )
\(\Rightarrow\widehat{B}-\widehat{B_2}=\widehat{C}-\widehat{C_2}\)
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)
\(\Rightarrow\Delta OBC\) cân tại \(O\) . \(\left(đpcm\right)\)
a) Tam giác ABC cân nên hai góc đáy bằng nhau : Góc ACB = Góc ABC
Ta lại có : Góc ABM = 180° - Góc ABC , Góc ACN = 180° - Góc ACB
Vậy Góc ABM = Góc ACN
Xét hai tam giác ABM và CAN , ta có :
AB = AC (gt)
Góc ABM = Góc ACN (cmt)
BM = CN (gt)
=> Tam giác ABM = tam giác CAN => AM = AN
Vậy tam giác AMN là tam giác cân tại A
b) Vì tam giác AMN cân => Góc AMB = Góc ANC
Xét tam giác MHB và tam giác CKN
Ta có : Góc MHB = Góc CKN ( Góc vuông )
Góc AMB = Góc ANC (cmt)
MB = CN (cmt)
=> tam giác MHB = tam giác NKC (g-c-g)
=> BH = CK
c) làm tương tự câu b
d) Tam giác ABM = Tam giác CKN => Góc HBM = Góc KCN
Góc CBO = Góc HBM và Góc KCN = Góc BCO ( đối đỉnh )
=> OBC là tam giác cân tại O
e) Khi BAC = 60° => Tam giác ABC đều
ta suy ra BM = AB => Tam giác ABM cân đỉnh B . Ta có Góc AMB = 1/2 ABC = 1/2 . 60 = 30°
Làm tương tự cho góc kia thì ANM = 30°
Góc  = 180 - 30° - 30° = 120°
Góc KCN = Góc BCO =60°
bn tham khảo!
Xét ΔGBC và ΔHCB có
GB=HC
\(\widehat{GBC}=\widehat{HCB}\)
BC chung
Do đó: ΔGBC=ΔHCB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
hay ΔOBC cân tại O
a) Xét tam giác BKC và tam giác CHB
+ BC chung
+ BK = HC vì AB = AC ; AK = AH => AB-AK=AC-AH
+ góc ABC = góc HCB (tam giác ABC cân)
Vậy tam giác BKC = tam giác CHB (c.g.c)
Và góc BKC = góc CHB
\(\widehat{KOB}=\widehat{HOC}\)(đối đỉnh)
\(\widehat{BKO}=\widehat{CHO}\left(cmt\right)\)
\(\Rightarrow\widehat{KBO}=\widehat{HCO}\)(3 góc trong tam giác)
Xét \(\Delta OKB\)và \(\Delta OHC\)
+ BK = HC
+ \(\widehat{KBO}=\widehat{OCH}\)
+ \(\widehat{OKB}=\widehat{OHC}\)
Vậy \(\Delta OKB=\Delta OHC\left(g.c.g\right)\)
VÀ OH = OK (hai cạnh tương ứng ) => Tam giác OKH cân tại O
OB = OC (hai cạnh tương ứng) => Tam giác OBC cân tại O
c) Xét \(\Delta AKO\)và \(\Delta AHO\)
+ AO chung
+ OK = OH
+ AH = AK
\(\Rightarrow\Delta AKO=\Delta AHO\left(c.c.c\right)\)
=> Góc KAO = góc HAO
Gọi giao điểm của KH và AO là F
Xét tam giác AFK và tam giác AFH
+ AK = AH
+ ÀF chung
+góc KAF = góc HAF (cmt)
Vậy tam giác AFK = tam giác AFH (c.g.c)
Và KF = FH(hai cạnh tương ứng)
Hay AO đi qua trung điểm của HK