Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C E F D
a.Xét \(\Delta ABD\) và \(\Delta EBD\) có:
\(\widehat{ABD}=\widehat{EBD}\) ( giả thiết)
BD - cạnh chung
\(\widehat{BAD}=\widehat{BED}\) ( = 90 do)
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.h-g.n\right)\)
\(\Rightarrow AB=EB\) ( 2 cạnh tương ứng)
b.Xét \(\Delta ADF\) và \(\Delta EDC\) có:
\(\widehat{ADF}=\widehat{EDC}\) ( đối đỉnh)
AD = ED ( vi \(\Delta ABD=\Delta EBD\) )
\(\widehat{DAF}=\widehat{DEC}\) ( = 90 do)
\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\)
=> DF = DC ( 2 cạnh tương ứng)
=> \(\Delta FDC\) cân tại D
c.Ta có:AB = EB (cm a)
=> \(\Delta ABE\) cân tại B
Mà BD là đường phân giác \(\widehat{ABE}\)
=> BD là đường trung trực của \(\Delta ABE\)
=> \(BD\perp AE\) (1)
Lại có: \(\Delta ADF=\Delta EDC\) ( cm b )
=>AF = EC ( 2 cạnh tương ứng)
Mà AB = BE => AB+AF=BE+EC
=> BF = BC. => \(\Delta BFC\) cân tại B
Mà BD là đường phân giác \(\widehat{ABC}\) hay \(\widehat{FBC}\)
=> BD là đường trung trực của \(\Delta FBC\)
=> \(BD\perp FC\) (2)
Từ (1),(2) => AE// FC ( dpcm)
a: Ta có: ΔBAC cân tại A
mà AD là phân giác
nên AD là đường cao
b: góc FAC=(180 độ-góc BAC)/2
góc ACB=(180 độ-góc BAC)/2
Do đó: góc FAC=góc ACB
=>AF//BC
c: Xét ΔECB có
CA là đường trung tuyến
CA=EB/2
DO đó: ΔECB vuông tại C
=>CE//AD
Xét tứ giác FDAE có
FD//AE
EF//AD
Do đó: FDAE là hình bình hành
Suy ra: FE=AD
A B C D F 1 2 1 3
a, Xét \(\Delta ABD;\Delta EBD\) có:
\(\widehat{B_1}=\widehat{B_2}\) (do BD là p/g góc B)
BD chung
\(\widehat{BAD}=\widehat{BED}=90^0\)
\(\Rightarrow\Delta BAD=\Delta BED\left(CH-GN\right)\)
=> AB=EB => B nằm trên trung trực của AE
AD=ED => D nằm trên trung trực của AE
=> BD là trung trực của AE.
Vậy BD là trung trực của AE.
b, Xét \(\Delta ADF;\Delta EDC\) có:
\(\widehat{DAF}=\widehat{DEC}=90^0\)
AD=ED
\(\widehat{D_1}=\widehat{D_3}\) (đối đỉnh)
\(\Rightarrow\Delta ADF=\Delta EDC\left(g-c-g\right)\Rightarrow DF=DC\)
Vậy DF=DC
c, Ta có:
\(CA\perp BF\) => CA là đường cao xuất phát từ C của \(\Delta BCF\)
\(FE\perp BC\) => FE là đường cao xuất phát từ F của \(\Delta BCF\)
Mà D là giao điểm của CA và FE => D là trực tâm của tam giác BCF
=> \(BD\perp FC\). (1)
Mà BD là trung trực của AE \(\Rightarrow BD\perp AE\) (2)
Từ (1) và (2) => AE//FC
Vậy AE//FC
câu a/
xét tam giác ABH và CAK có:
góc AHB=góc AEC=90;
AB=AC;
góc ABH=góc CAE﴾cùng phụ với góc BAE﴿
=> tam giác ABH=CAK﴾cạnh huyền‐ góc nhọn﴿
=>BH=AK c
âu b/ tam giác ABC vuông cân
; M là trung điểm của BC
=>AM=BM=CM
xét tam giác BMH và AMK
có góc MBH=MAK﴾cùng phụ với góc BEH﴿
; BH=AK﴾cmt﴿; BM=AM﴾cmt﴿
=>tam giác bằng nhau
Câu c/
theo câu b/
=> MH=MK﴾2 cạnh tương ứng﴿﴾1﴿
Xét tam giác AHM và CEM có
AH=CE﴾tam giác ABH=CEK﴿;
MH=MK﴾cmt﴿;
AM=MC﴾cmt﴿
=> tam giác bằng nhau
=>góc AMH= góc CMK mà góc AMH+góc EMH=90
=>góc HME+gócCMK=90 =>góc HMK=90﴾2﴿
từ ﴾1﴿﴾2﴿
=> tam giác MHK vuông cân
Onegai! Minna-san. Ariato.
cho em xin 1 tk !