Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BD=CD=6cm
=>AD=8cm
b: Ta có: ΔABC cân tại A
mà AD là đường cao
nên Dlà trung điểm của BC
=>A,G,D thẳng hàng
c: Xét ΔABG và ΔACG có
AB=AC
góc BAG=góc CAG
AG chung
Do đó: ΔABG=ΔACG
a) BD=BC/2=12/2=6
Vậy BC=6cm
Áp dụng định lý Py ta go vào tam giác vuông ABD, ta có:
\(AB^2+BD^2=AD^2\)
\(10^2+6^2=136\)
=> AD=\(\sqrt{136}\)
b) Tam giác ABC cân tại A, đường cao AD
=> AD là đường phân giác góc BAC (1)
Sau đó cm góc BG là tia pg góc HBD và CG là tia pg góc DCL cắt nhu tại G.
=> AG là pg góc BAC (2)
Từ (1) và (2) => AG và AD trùng nhau.
=>A, G, D thẳng hàng
CÁc câu kia dễ mình không ns còn câu d trong 3 điểm thẳng hàng =180 độ
tự kẻ hình nha
a) xét tam giác ABH và tam giác ACH có
AB=AC(gt)
ABC=ACB(gt)
AHB=AHC(=90 độ)
=> tam giác ABH= tam giác ACH( ch-gnh)
b) từ tam giác ABH= tam giác ACH=> HB=HC( hai cạnh tương ứng)
=>HB=HC=BC/2=12/2=6cm
ta có AH^2=AB^2-BH^2=10^2-6^2=100-36=64=8^2
=> AH=8 (AH>0)
d) vì HB=HC=> H là trung điểm của BC=> AH là trung tuyến
mà G là trọng tâm của tam giác ABC=> G thuộc AH=> A,G,H thẳng hàng
c) vì AH vừa là trung tuyến vừa là đường cao => AH là trung trực của BC
vì G thuộc AH=> GB=GC
xét tam giác ABG và tam giác ACG có
AB=AC(gt)
GB=GC( cmt)
AG chung
=> tam giác ABG= tam giác ACG(ccc)
chế cho phần d) lên trước phần c) cho đỡ phải chứng minh lại thôi chứ không có j đâu
a)Xét tam giácABC có AH là đường cao
=>AH là trung tuyến tam giác ABC(t/c tam giác cân)
=>BH=HC=\(\frac{BC}{2}\)=\(\frac{6}{2}\)=3(cm)
Xét tam giác ABH có góc H= 90 độ900:
=>AB2 =AH2 +BH2 (định lí Py-ta-go)
52 =AH2+32
52 -32 =AH2
25-9=AH2
16=AH2
42 =AH2
=>AH=4(cm)
A B C H G
a, Xét tam giác ABH và tam giác ACH vuông tại H có: +, AB = AC ( vì tam giác ABC cân tại A)
+, AH chung
=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm
b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng
c, Vì tam giác ABH = tam giác ACH => góc BAH = góc CAH
Xét tam giác ABG và tam giác ACG có
AB = AC ( vì tam giác ABC cân tại A )
góc BAH = góc CAH ( chứng minh trên)
AG chung
=>tam giác ABG = tam giác ACG(c.g.c)
=> góc ABG = góc ACG
a)
Ta có tam giác ABC cân tại A ( gt )
Mà AH là đường cao
Nên AH cũng là đường trung tuyến của tam giác ABC => H là trung điểm BC
=> BH = CH = BC / 2 = 6 / 2 = 3 cm
Xét tam giác AHB vuông tại H
Ta có : AB2 = AH2 + BH2 ( Py-ta-go )
52 = AH2 + 32
=> AH2 = 16
=> AH = 4 cm
b)
Ta có G là trọng tâm của tam giác ABC ( gt )
=> AG là đường trung tuyến ứng với cạnh BC trong tam giác ABC
mà AH cũng là đường trung tuyến ứng với cạnh BC trong tam giác ABC ( chứng minh ở câu a )
=> A,G,H thẳng hàng
c)
gọi CG cắt AB tại E ; BG cắt BC tại F
vì G là trọng tâm => CE ; BF là đường trung tuyến
=> E là trung điềm AB ; F là trung điểm AC
Ta có EA = BA / 2 = 5 / 2 = 2,5 cm
AF = AC / 2 = 5 / 2 = 2,5 cm
Xét tam giác AEC và tam giác AFB
ta có : AE = AF = 2,5
góc BAC chung
AC = AB = 5
Nên 2 tam giác = nhau ( c-g-c )
=> góc ABG = góc ACG ( tương ứng )
giúp tớ nha mai ktra rồi