Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Xét tg ABH và ACK có :
AB=AC(tg ABC cân tại A)
\(\widehat{A}-chung\)
\(\widehat{AHB}=\widehat{AKC}=90^o\)
=> Tg ABH=ACK(cạnh huyền-góc nhọn) (đccm)
b) Do tg ABH=ACK (cmt)
\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)
Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)
\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)
=> Tg OBC cân tại O
=> OB=OC (đccm)
c) Do : AB=AC (tg ABC cân tại A)
MB=NC(gt)
=> AB+BM=AC+CN
=> AM=AN
=> Tg AMN cân tại A
\(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
- Do tg ABH=ACK (cmt)
=> AK=AH
=> Tg AKH cân tại A
\(\Rightarrow\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
- Từ (1) và (2) \(\Rightarrow\widehat{M}=\widehat{AKH}\)
Mà chúng là 2 góc đồng vị
=> KH//MN (đccm)
#H
a) Tam giác sao lại có số đo??!!!!
b) Xét \(\Delta AME\)và \(\Delta BMH\)có:
AM = BM (M là trung điểm của AB)
\(\widehat{AME}=\widehat{BMH}\)(2 góc đối đỉnh)
ME = MH (gt)
\(\Rightarrow\Delta AME=\Delta BMH\left(c.g.c\right)\)
R làm sao mà suy ra AH vuông góc vs AE??!!!!
c) Ta có: \(\Delta AME=\Delta BMH\)(theo a)
\(\Rightarrow\widehat{EAM}=\widehat{HBM}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AE//BH\)
hay \(AE//BC\)(1)
Xét \(\Delta ANF\)và \(\Delta CNH\)có:
AN = CN (N là trung điểm của AC)
\(\widehat{ANF}=\widehat{CNH}\)(2 góc đối đỉnh)
NF = NH(gt)
\(\Rightarrow\Delta ANF=\Delta CNH\left(c.g.c\right)\)
\(\Rightarrow\widehat{AFN}=\widehat{CHN}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AF // CH
hay AF // BC (2)
Từ (1) và (2) => A,E,F thẳng hàng
tự vẽ hình nhá!
b; Theo a, ta có tam giác DBM = tam giác FMB( cạnh huyền- góc nhọn)
=> MD = BF (hai cạnh tương ứng) (*)
Ta có : FH vuông góc với AC(1)
ME vuông góc với AC(2)
Từ (1) và (2) suy ra: FH // ME
=> góc H1 = góc M3 (hai góc so le trong)
Xét tam giác MFH và tam giác HEM ta có:
HM: cạnh chung
Góc H1 = góc M3 (cmt)
Suy ra tam giác MFH = tam giác HEM (cạnh huyền - góc nhọn)
=>FH = ME (hai cạnh tương ứng) (**)
Từ (*) và (**) suy ra: MD + ME = BF + FH = BH
Suy ra : BH không đổi
=> MD + ME không đổi
( đpcm)
a) Tgiac ABC cân tại A => AB = AC và góc B = góc C
Xét tgiac ABD và ACE có:
+ AB = AC
+ góc B = C
+ BD = CE
=> tgiac ABD = ACE (cgc)
=> AD = AE
b) Xét tgiac BDF và CEG có:
+ BD = CE
+ góc B = góc C
+ góc BFD = CGE = 90 độ
=> tgiac BDF = CEG (ch-gn)
=> đpcm
c) Xét tgiac AFD và AGE có:
+ AD = AE (cmt)
+ góc FAD = GAE (vì tgiac ABD = ACE)
+ góc AFD = AGE = 90 độ
=> tgiac AFD = AGE (ch-gn)
=> góc ADF = AEG
=> góc EDH = DEH (hai góc đối đỉnh)
=> tgiac DEH cân tại H (đpcm)