K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B E A F C M I 1 2 1 N2

a) M là trung điểm của BC

=> BM=CM

tam giác ABC cân tại A

=> AB=AC

xét tam giác ABM và tam giác ACM có

AB=AC

BM=CM

cạnh AM chung

do đó : tam giác ABM= tam giác ACM ( c.c.c)

b) do tam giác ABM = tam giác ACM

=> góc A1 = góc A2

xét tam giác AEM và tam giác AFM có

cạnh AM chung

góc A1= góc A2

góc AEM=góc AFM =90 độ

do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)

c) gọi N là giao của AM va EF

do tam giác AEM= tam giác AFM

=> AE=AF

xét tam giác AEN và tam giác AFN có

cạnh AN chung

góc A1 = góc A2

AE=AF

do đó tam giác AEN=tam giác AFN ( c.g.c)

=> góc N1=góc N2

mà góc N1 + góc N2 = 180 độ ( kề bù)

=> góc N1= góc N2=90 độ

=> AN vuông góc EF

hay AM vuông góc EF

d) Qua F kẻ đg thẳng // với CE cắt AM tại H

+ HF là đg trung bình của ΔACI

HF=\(\frac{1}{2}\)CI⇒HF=12CI

+ ΔABM cân tại M

=> đg cao ME đồng thới là đg trung tuyến

=> AE = BE

+ Tương tự : AF = CF

+ EF là đg trung bình của ΔABC

=> EF // BC

+ Tứ giác EFCM là hbh

=> MK = FK

+ HF // CE => HF // IK

+ IK là đg trung bình của ΔMHF

\(\Rightarrow IK=\frac{1}{2}HF\Rightarrow CI=4IK\)

IK=12HFCI=4IK

15 tháng 5 2020

a) M là trung điểm của BC

=> BM=CM

tam giác ABC cân tại A

=> AB=AC

xét tam giác ABM và tam giác ACM có

AB=AC

BM=CM

cạnh AM chung

do đó : tam giác ABM= tam giác ACM ( c.c.c)

b) do tam giác ABM = tam giác ACM

=> góc A1 = góc A2

xét tam giác AEM và tam giác AFM có

cạnh AM chung

góc A1= góc A2

góc AEM=góc AFM =90 độ

do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)

c) gọi N là giao của AM va EF

do tam giác AEM= tam giác AFM

=> AE=AF

xét tam giác AEN và tam giác AFN có

cạnh AN chung

góc A1 = góc A2

AE=AF

do đó tam giác AEN=tam giác AFN ( c.g.c)

=> góc N1=góc N2

mà góc N1 + góc N2 = 180 độ ( kề bù)

=> góc N1= góc N2=90 độ

=> AN vuông góc EF

hay AM vuông góc EF

hok tốt!

14 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b:Sửa đề: Chứng minh AE=AF

Ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

nên EF//BC

d: Xét ΔABN vuông tại B và ΔACN vuông tại C có

AN chung

AB=AC

Do đó: ΔABN=ΔACN

=>BN=CN

=>N nằm trên đường trung trực của BC(1)

Ta có; ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,N thẳng hàng

14 tháng 12 2023

Bạn ơi vì sao góc EAM = góc FAM vậy

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc MAB=góc MAC

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF và ME=MF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

c: IN//EM

=>NI/ME=BN/BM

=>NI/MF=BN/CM

=>NI/BN=MF/CM

FM//NK

=>MF/NK=CM/CN

=>MF/CM=NK/CN

=>NK/CN=NI/BN=(NI+NK)/BC ko đổi

12 tháng 6 2024

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc MAB=góc MAC

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF và ME=MF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

c: IN//EM

=>NI/ME=BN/BM

=>NI/MF=BN/CM

=>NI/BN=MF/CM

FM//NK

=>MF/NK=CM/CN

=>MF/CM=NK/CN

=>NK/CN=NI/BN=(NI+NK)/BC ko đổi

24 tháng 12 2023

Cho △ABC có AB = AC, AM là phân giác của ∠BAC (M ∈ BC):

a, Chứng minh △ABM = △ACM.

b, Chứng minh M là trung điểm của BC và AM ⊥ BC.

c, Kẻ MF ⊥ AB (F ∈ AB) và ME ⊥ AC (E ∈ AC). Chứng minh EF // BC.

Giải:

a,

- Xét 2 △ABM và △ACM, có:

     AB = AC (theo giả thiết)

     ∠CAM = ∠BAM (AM là phân giác của ∠BAC)

     AM_cạnh chung

=> △ABM = △ACM (c.g.c)

b,

- Có △ABM = △ACM (chứng minh trên)

=> MC = MB (2 cạnh tương ứng)

=> M là trung điểm của BC

=> ∠AMC = ∠AMB (2 góc tương ứng)

     mà 2 ∠AMC và ∠AMB kề bù

=> ∠AMC = ∠AMB = \(\dfrac{180^o}{2}\) = 90o

<=> AM ⊥ BC

c,

- Xét 2 △AEM và △AFM, có:

     ∠AEM = ∠AFM = 90o

     AM_cạnh chung

     ∠EAM = ∠FAM (AM là phân giác của ∠EAF)

=> △AEM = △AFM (cạnh huyền - góc nhọn)

=> AE = AF (2 cạnh tương ứng)

<=> △AEF cân tại A 

=> ∠AEF = \(\dfrac{180^o-\text{∠}EAF}{2}\) (số đo của một góc ở đáy trong △AEF cân tại A) (1)

Có △ABC cân tại A (AB = AC)

=> ∠ACB = \(\dfrac{180^o-\text{∠}BAC}{2}\) (số đo của một góc ở đáy trong ΔABC cân tại A) (2)

Từ (1) và (2) suy ra ∠AEF = ∠ACB

     mà ∠AEF và ∠ACB ở vị trí đồng vị

=> EF//BC