K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

=>ΔABM=ΔACM

=>MB=MC

Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

góc HAM=góc KAM

=>ΔAHM=ΔAKM

=>AH=AK

Xét ΔABC có AH/AB=AK/AC

nên HK//BC

28 tháng 3 2020

Ta có : tam giác AMH = tam giác AMK 

=> AH = AK 

Xét tam giác AHI và tam giác AKI có : 

AH = AK 

góc HAI = góc IAK ( vì AI là phương giác ) 

AI chung 

=> tam giác AHI = tam giác AKI 

=> góc AHI = góc AKI = 180 độ / 2 = 90 độ 

và HI = IK  = HK/ 2 = 6/2 = 3 

Xét tam giác vuông  AIK  vuông tại I có  : 

AI = \(\sqrt{AK^2-IK^2}=\sqrt{5^2-3^2}=4\)

=> AI = 4 cm

Ta có hình vẽ:

A B C M H K

(Ảnh ko chuẩn lắm)

Vì \(\Delta ABC\)cân tại A nên AM vừa là tia phân giác, vừa là đường cao của \(\Delta ABC\)

=> MB=MC(t/chất của đường cao trong tam giác cân, tự chứng minh nhé)

Xét \(\Delta MBH\)và \(\Delta MCK:\)

BM=CM(cmt)

\(\widehat{HBM}=\widehat{KCM}\)\(\Delta ABC\)cân tại A)

\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)

=> HB=KC( 2 cạnh tương ứng)

Mà AB=AC => AH=AK

Xét \(\Delta AHI\)và \(\Delta AKI:\)

AH=AK (cmt)

AI: cạnh chung

\(\widehat{HAI}=\widehat{KAI}\)(gt)

\(\Rightarrow\Delta AHI=\Delta AKI\left(c-g-c\right)\)

=> HI=IK(2 cạnh tương ứng)

\(\Rightarrow IK=\frac{HK}{2}=\frac{6}{2}=3cm\)

Lại có: AH=AK => \(\Delta AHK\)cân tại A

=> AI là đường cao của \(\Delta AHK\)

Xét \(\Delta AIK\)vuông tại I có:

Áp dụng định lý Py- ta-go, ta có:

AI2+IK2=AK2

=> AI2=AK2-IK2

=> AI2=52-32

=> AI2=16

=> AI=4cm

Vậy AI=4cm

NM
12 tháng 1 2022

ta có:

undefined

10 tháng 5 2018

cái này k là toán thì là j

1 tháng 5 2020

100-79=

22 tháng 4 2020

A B C I M K

a, Xét tam giác vuông MHC có :

\(\widehat{CMH}+\widehat{HCM}=90^o\)

Xét tam giác vuông ABC có:

\(\widehat{HIB}+\widehat{HCM}=90^o\)

\(\Rightarrow\widehat{CMH}=\widehat{HIB}\)

Xét 2 tam giác : KHM và IHB

MH = HB ( gt )

\(\widehat{CMN}=\widehat{HBI}\left(cmt\right)\)

\(\widehat{MKH}=\widehat{HIB}=90^o\)

\(\Rightarrow\Delta KHM=\Delta IHB\)

b, \(\Rightarrow HK=HI\)

Xét 2 tam giác : KHA và IHA

KM = IH ( cm a )

AN chung

\(\widehat{HKA}=\widehat{AIM}=90^o\)

\(\Rightarrow\Delta KHA=\Delta IHA\)

\(\Rightarrow\widehat{KAH}=\widehat{HAI}\)

Vậy : AH là tia phân giác góc BAC

22 tháng 4 2020

a, xet △ vuong mhc co  ∠cmh + ∠hcm = 90 do  xet △ vuong abc co  ∠hbi + ∠hcm = 90 do  suy ra ∠cmh = ∠hbi  xet △ BHI va △ MHK co  ∠CMH = ∠HBI [c/m tr]  HM = BH [gt]  ∠BIH = ∠MKH [=90 do]  ➩ △ BHI = △ MHK [ch-gn]  b, tu a co △bhi = △mhk ➩ ih = kh   xet △aih va △akh co  ah chung  ih = kh [c/m tr]  ∠aih = ∠akh [= 90 do]  ➩ △aih = △kah [ch-cgv]  ➩ ∠iah = ∠kah  ➩ ah la p/g cua ∠bac

20 tháng 3 2019

a, xét tam giác AMB và tam giác AMC có:

                AB=AC(gt)

                \(\widehat{BAM}\)   =\(\widehat{CAM}\)(gt)

                AM chung

suy ra tam giác AMB= tam giác AMC(c.g.c)

b,xét tam giác AHM và tam giác AKM có:

                AM cạnh chung

                \(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)

suy ra tam giác AHM=tam giác AKM(CH-GN)

Suy ra AH=AK

c,gọi I là giao điểm của AM và HK

xét tam giác AIH và tam giác AIK có:

            AH=AK(theo câu b)

            \(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)

            AI chung

suy ra tam giác AIH=tam giác AIK (c.g.c)

Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ

\(\Rightarrow\)HK vuông góc vs AM

15 tháng 2 2017

Gọi I là giao điểm giữa AH và KG 

Ta có : tam giác ABH=tam giác ACH(CH-GN)

Suy ra :A1=A2

Lại có: tam giác AKH=tam giác AGH(CH-GN)

Suy ra :AK=AG

Suy ra:tam giác AKG cân tại A mà tam giác ABC cân tại A . Suy ra :K1=B,G1=C

Suy ra :KG//BC(ĐPCM)

*Chú ý :mình quên ghi kí hiệu góc (chắc chắn đúng)

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

=>ΔABM=ΔACM

b: Xét ΔAIM vuông tạiI và ΔAKM vuông tại K có

AM chung

góc IAM=góc KAM

=>ΔAIM=ΔAKM

=>AI=AI và MI=MK

c:AI=AK

MI=MK

=>AM là trung trực của IK=>AM vuông góc IK