K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc DBH chung

Do đó: ΔBDH đồng dạng với ΔBEC

Xét ΔBDH vuông tại D và ΔAEH vuông tại E có

góc BHD=góc AHE

Do đó: ΔBDH đồng dạng với ΔAEH

b: DC=BC/2=60(cm)

=>AD=80cm

Xét ΔBEC vuông tại E và ΔADC vuông tại D có

góc C chung

Do đó: ΔBEC đồng dạng với ΔADC

=>BE/AD=EC/DC=BC/AC

=>BE/80=EC/60=120/100=6/5

=>BE=96(cm); EC=72(cm)

Ta có: ΔBDH đồng dạng với ΔBEC

nên BD/BE=DH/EC=BH/BC

=>DH/72=BH/120=60/96=5/8

=>DH=45cm; BH=75cm

Ta có;ΔBDH đồng dạng với ΔAEH

nên BD/AE=DH/EH=BH/AH

=>45/EH=75/AH=60/100-72=60/28=15/7

=>EH=45:15/7=45x7/15=21(cm)

a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc DBH chung

Do đó: ΔBDH đồng dạng với ΔBEC

Xét ΔBDH vuông tại D và ΔAEH vuông tại E có

góc BHD=góc AHE

Do đó: ΔBDH đồng dạng với ΔAEH

b: DC=BC/2=60(cm)

=>AD=80cm

Xét ΔBEC vuông tại E và ΔADC vuông tại D có

góc C chung

Do đó: ΔBEC đồng dạng với ΔADC

=>BE/AD=EC/DC=BC/AC

=>BE/80=EC/60=120/100=6/5

=>BE=96(cm); EC=72(cm)

Ta có: ΔBDH đồng dạng với ΔBEC

nên BD/BE=DH/EC=BH/BC

=>DH/72=BH/120=60/96=5/8

=>DH=45cm; BH=75cm

Ta có;ΔBDH đồng dạng với ΔAEH

nên BD/AE=DH/EH=BH/AH

=>45/EH=75/AH=60/100-72=60/28=15/7

=>EH=45:15/7=45x7/15=21(cm)

29 tháng 3 2017

mink ko biết

a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc DBH chung

Do đó: ΔBDH đồng dạng với ΔBEC

Xét ΔBDH vuông tại D và ΔAEH vuông tại E có

góc BHD=góc AHE

Do đó: ΔBDH đồng dạng với ΔAEH

b: DC=BC/2=60(cm)

=>AD=80cm

Xét ΔBEC vuông tại E và ΔADC vuông tại D có

góc C chung

Do đó: ΔBEC đồng dạng với ΔADC

=>BE/AD=EC/DC=BC/AC

=>BE/80=EC/60=120/100=6/5

=>BE=96(cm); EC=72(cm)

Ta có: ΔBDH đồng dạng với ΔBEC

nên BD/BE=DH/EC=BH/BC

=>DH/72=BH/120=60/96=5/8

=>DH=45cm; BH=75cm

Ta có;ΔBDH đồng dạng với ΔAEH

nên BD/AE=DH/EH=BH/AH

=>45/EH=75/AH=60/100-72=60/28=15/7

=>EH=45:15/7=45x7/15=21(cm)

15 tháng 5 2022

a. Lưu ý: Hai tam giác bằng nhau cũng là hai tam giác đồng dạng, với tỉ số đồng dạng là 1.

△ABD∼△ACD∼△AHE∼△BHD∼△BCE.

15 tháng 5 2022

b. △ABC cân tại A mà AD là đường cao \(\Rightarrow\)AD cũng là trung tuyến

\(\Rightarrow\)D là trung điểm BC.

△ABD vuông tại D có:

\(AD^2+BD^2=AB^2\Rightarrow AD=\sqrt{AB^2-BD^2}=\sqrt{20^2-\left(\dfrac{24}{2}\right)^2}=16\left(cm\right)\)

△BHD∼△ABD \(\Rightarrow\dfrac{DH}{DB}=\dfrac{DB}{DA}\Rightarrow DH=\dfrac{BD^2}{AD}=\dfrac{\left(\dfrac{24}{2}\right)^2}{16}=9\left(cm\right)\)

\(AH=AD-DH=16-9=7\left(cm\right)\)

\(\dfrac{HB}{BA}=\dfrac{DB}{DA}\Rightarrow BH=\dfrac{AB.BD}{AD}=\dfrac{20.\dfrac{24}{2}}{16}=15\left(cm\right)\)

△ACD∼△AHE \(\Rightarrow\dfrac{CD}{HE}=\dfrac{AC}{AH}\Rightarrow HE=\dfrac{CD.AH}{AC}=\dfrac{\dfrac{24}{2}.7}{20}=4,2\left(cm\right)\)

Bài 6: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.a) Tìm các tam giác đồng dạng với tam giác BDH.b).Tính độ dài HD, BHc).Tính độ dài HEBài 7: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:a) BH.BD = BK.BCb)CH.CE = CK.CBc) Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở Q ; M là trung...
Đọc tiếp

Bài 6: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.

a) Tìm các tam giác đồng dạng với tam giác BDH.

b).Tính độ dài HD, BH

c).Tính độ dài HE

Bài 7: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:

a) BH.BD = BK.BC

b)CH.CE = CK.CB

c) Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở Q ; M là trung điểm của BC.Chứng minh: H ; M ; Q thẳng hàng.

Bài 8 :  Cho tam giác ABC cân tại A ; trên BC lấy điểm M , vẽ ME ; MF vuông góc với AC ; A
B.kẻ đường cao CH. Chứng minh:

a) Tam giác BFM đồng dạng với tam giác CEM.

b) Tam giác BHC và tam giác CEM đồng dạng.

c) ME + MF không đổi khi M di động trên BC.

Bài 9:  Cho hình hộp chữ nhật ABCDA’B’C’D’ có AB = 10cm  ; BC = 20 cm  ; AA’  = 15cm.

a)   Tính thể tích hình hộp chữ nhật.

b) Tính độ dài đường chéo AC’ của hình hộp chữ nhật.

Bài 10: Cho hình chóp tứ giác đều S .ABCD có cạnh đáy AB = 10 cm ; cạnh bên SA = 12 cm.

Tính :  a) Đường chéo AC

b) Tính đường cao SO và thể tích hình chóp.

0

TK

a) Các tam giác đồng dạng với tam giác BDH là:

tam giác AEH (g-g)

tam giác BEC (g-g)

tam giác ADC (g-g)

tam giác ADB (vì tam giác ADB bằng tam giác ADC)

b) Xét tam giác ABC cân tại A, có:

AD là đường cao

=> AD là đường trung tuyến

=> DB = DC = BC/2 = 120/2 = 60(cm)

Áp dụng định lý Pytago vào tam giác ACD vuông tại D, có:

AC2 = AD2 + CD2

AD = 80(cm)

Xét tam giác ABC, có:

AD là đường cao (gt)

BE là đường cao (gt)

AD cắt BE tại H (gt)

 

=> H là trực tâm

=> HD = 1/3AD = 1/3*80 = 80/3(cm)

Áp dụng định lý Pytago vào tam giác BHD vuông tại D, có:

BH2 = BD2 + HD2

BH = 5,7(cm)

 

 

3 tháng 5 2016

a, Xét tam giác ADB và tam giác AEC có:

^A chung

^AEC = ^ADB 

\(\Rightarrow\) ADB đồng dạng AEC

b,Xét tam giác HEB và tam giác HDC có:

^EHB = ^DHC

^HEB = ^HDC

\(\Rightarrow\) tam giác HEB đồng dạng tam giác HDC

\(\Rightarrow\) HE.HC = HD.HB