K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2017

làm kiểu j vậy

23 tháng 5 2021

Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.

a, Tính độ dài cạnh BC của tam giác ABC.

b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.

c, Chứng minh CB = CD.

* Hình tự vẽ 

a)

Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm

b)

Xét tam giác DBC, ta có:

BK là trung tuyến ứng với cạnh CD ( gt )

CA là trung tuyến ứng với cạnh BD ( AB = AD )

BK giao với CA tại E

=> E là trọng tâm của tam giác BDC

=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm

c)

Xét tam giác BDC, ta có:

CA là trung tuyến ứng với cạnh BD

CA là đường cao ứng với cạnh BD

=> Tam giác BDC cân tại C

=> CB = CD

23 tháng 5 2021

Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC

B A C

Theo đề ra: Góc A = 50 độ

                   Góc B = 60 độ

                   Góc C = 70 độ

=> Góc A < góc B < góc C

=> BC < AC < AB ( quan hệ giữa góc và cạnh đối diện trong một tam giác )

9 tháng 4 2020

d, CMTT câu b ta có ▲DMH cân tại D →góc DMA= góc DHA   (*)

CMTT câu c ta có góc HDA= góc HCB   (1)

Vì ▲BCD  cân  và có CA vuông góc với BD →góc HCD=góc HCB      (2)

Từ  (1) và (2)ta có góc HCD=góc HDA     (**) 

Cộng hai vế của (*) và (**)ta có DMA+HCD=DHA+HDA=90°

→▲DMC vuông→đpcm

25 tháng 3 2017

a, ta có:

         BC2=AB2+AC2

thay  152=92+AC2

        225=81+AC2

       AC2=144

       AC=12

  Vậy cạnh AC=12cm

 Mà AC > AB(vì 12>9)

=>góc ABC > góc ACB(Đ/lí góc đối diện vs cạnh lớn hơn)

b,ta có:BA=DA(vì A là trung điểm của BD)

xét tam giác BCA và tam giácDCA

có:BA=DA(C/m trên)

    góc BAC=góc DAC (=900)

    AC là cạnh chung

=>tam giác BCA=tam giác DCA(c.g.c)

=>BC=DC(2 cạnh t/ứng)

=>tam giác BDC cân tại C

mk chỉ làm đc thế thôi

ok

19 tháng 5 2016

hình bn tự vẽ nhé,mk ko biết vẽ hình trên đây:

a)  Xét tam giác ABC vuông ở A có:

AB2+AC2=BC2 (đ/l pytago)

=>AC2=BC2-AB2=152-92=144

=>AC=12(cm)

Vì AC>AB (12cm>9cm)

=>^ABC>^ACB (đ/l về góc đối diện.....)

b Vì AB _|_ AC (tam giác ABC vuông tại A)

mà AD là tia đối tia AB=>AD _|_ AC

Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A có:

AC:cạnh chung

AB=AD (A là trung điểm của BD)

=>tam giác ABC=tam giác ADC (2 cạnh góc vuông)

 

 

19 tháng 5 2016

a. Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A, ta có:

BC2=AB2+AC2

152 = 92 +AC2

AC2 =152-92=144

AC=12 (cm)

Xét tam giác ABC: AC > AB (12 cm >9cm)

=> góc ABC>góc ACB ( quan hệ giữa góc và cạnh đối diện)

b. Ta có: góc BAC + góc DAC = 180* ( hai góc kề bù)

                   90*     + góc DAC = 180*

=> góc DAC =180*-90*=90*

=> tam giác ADC vuông tại A.

Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A, ta có:

AB = AD (A là trung điểm của BD)

AC là cạnh chung

=> tam giác ABC= tam giác ADC ( hai cạnh góc vuông)

=> BC = DC ( hai cạnh tương ứng)

=> tam giác BDC cân tại C.

c. A là trung điểm của BD => CA là đường trung tuyến của tam giác BDC.

   K là trung điểm của BC => DK là đường trung tuyến của tam giác BDC.

CA cắt t DK tại M=> M là trọng tâm của tam giác BDC.

=> CM =2/3CA    

     CM =2/3.12

     CM = 8 (cm)

Vậy CM=8 cm

21 tháng 2 2020

A B C D 4cm

a) Xét △ABD và △ABC có :

           AB chung (gt)

           AD = AC (gt)

\(\Rightarrow\)△ABD = △ABC (hai cạnh góc vuông)

b) Vì △ABD = △ABC

\(\Rightarrow\)BD = BC

\(\Rightarrow\)△BCD cân tại B

\(\Rightarrow\widehat{BCD}=\widehat{BDC}=60^o\)

\(\Rightarrow\widehat{CBD}=180^o-\left(\widehat{BCD}+\widehat{BDC}\right)\)

\(\Rightarrow\widehat{CBD}=60^o\)

Ta có : \(\widehat{CBD}=\widehat{BCD}=\widehat{BDC}=60^o\)

\(\Rightarrow\)△BCD là tam giác đều

c) Xét △ABC vuông tại A có \(\widehat{ACB}=60^o\)

\(\Rightarrow\)△ABC là tam giác nửa đều

\(\Rightarrow\)BC = 2AC

\(\Rightarrow\)BC = 8 cm

Vì AD = AC (gt)

\(\Rightarrow\)AD = 4cm

Vậy BC = 8 cm

       AD = 4cm

21 tháng 2 2020

B A D C     Hình ảnh chỉ mang tính chất minh họa

a) Theo bài ra ta có \(\hept{\begin{cases}\widehat{CAB}=90^o\\\widehat{DAB}+\widehat{CAB}=180^o\end{cases}}\)  ( 2 góc kề bù )

\(\Rightarrow\widehat{DAB}=90^o\)

+) Xét \(\Delta ABC\) vuông tại A và \(\Delta ABD\) vuông tại A có

AB : cạnh chung

AC =  AD  ( gt)

\(\Rightarrow\)\(\Delta ABC\) = \(\Delta ABD\)  ( c-g-c )

b) Theo câu a ta có \(\Delta ABC\) =    \(\Delta ABD\)

\(\Rightarrow BC=BD\)  (2 cạnh tương ứng )

   +) Xét \(\Delta BCD\) có

\(\hept{\begin{cases}BC=BD\\\widehat{C}=60^o\end{cases}}\left(gt\right)\)

\(\Rightarrow\)\(\Delta BCD\)  là tam giác đều

cTheo  bài ra ta có \(\hept{\begin{cases}AD=AC\\AC=4cm\end{cases}}\)  ( gt)

\(\Rightarrow AD=4\) cm

+) Xét \(\Delta ABC\) vuông tại A  

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)  ( tính chất tam giác vuông )

\(\Rightarrow\widehat{ABC}+60^o=90^o\)

\(\Rightarrow\widehat{ABC}=30^o\)

+) Xét \(\Delta ABC\) vuông tại A và \(\widehat{ABC}=30^o\)

\(\Rightarrow AC=\frac{1}{2}BC\)  ( t/c trong 1 tam giác vuông có 1 góc = 30 độ thì cạnh đối diện vs   góc 30 độ bằng 1 nửa cạnh huyền )

\(\Rightarrow BC=2.AC\)

\(\Rightarrow BC=2.4=8\)  ( cm)

Vậy AD = 4 ( cm) và BC = 8  ( cm)

!! K chắc

@@ Học tốt

Chiyuki Fujito