Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính độ dài cạnh BC của tam giác ABC.
b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.
c, Chứng minh CB = CD.
* Hình tự vẽ
a)
Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm
b)
Xét tam giác DBC, ta có:
BK là trung tuyến ứng với cạnh CD ( gt )
CA là trung tuyến ứng với cạnh BD ( AB = AD )
BK giao với CA tại E
=> E là trọng tâm của tam giác BDC
=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm
c)
Xét tam giác BDC, ta có:
CA là trung tuyến ứng với cạnh BD
CA là đường cao ứng với cạnh BD
=> Tam giác BDC cân tại C
=> CB = CD
Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC
B A C
Theo đề ra: Góc A = 50 độ
Góc B = 60 độ
Góc C = 70 độ
=> Góc A < góc B < góc C
=> BC < AC < AB ( quan hệ giữa góc và cạnh đối diện trong một tam giác )
d, CMTT câu b ta có ▲DMH cân tại D →góc DMA= góc DHA (*)
CMTT câu c ta có góc HDA= góc HCB (1)
Vì ▲BCD cân và có CA vuông góc với BD →góc HCD=góc HCB (2)
Từ (1) và (2)ta có góc HCD=góc HDA (**)
Cộng hai vế của (*) và (**)ta có DMA+HCD=DHA+HDA=90°
→▲DMC vuông→đpcm
a, ta có:
BC2=AB2+AC2
thay 152=92+AC2
225=81+AC2
AC2=144
AC=12
Vậy cạnh AC=12cm
Mà AC > AB(vì 12>9)
=>góc ABC > góc ACB(Đ/lí góc đối diện vs cạnh lớn hơn)
b,ta có:BA=DA(vì A là trung điểm của BD)
xét tam giác BCA và tam giácDCA
có:BA=DA(C/m trên)
góc BAC=góc DAC (=900)
AC là cạnh chung
=>tam giác BCA=tam giác DCA(c.g.c)
=>BC=DC(2 cạnh t/ứng)
=>tam giác BDC cân tại C
mk chỉ làm đc thế thôi
ok
hình bn tự vẽ nhé,mk ko biết vẽ hình trên đây:
a) Xét tam giác ABC vuông ở A có:
AB2+AC2=BC2 (đ/l pytago)
=>AC2=BC2-AB2=152-92=144
=>AC=12(cm)
Vì AC>AB (12cm>9cm)
=>^ABC>^ACB (đ/l về góc đối diện.....)
b Vì AB _|_ AC (tam giác ABC vuông tại A)
mà AD là tia đối tia AB=>AD _|_ AC
Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A có:
AC:cạnh chung
AB=AD (A là trung điểm của BD)
=>tam giác ABC=tam giác ADC (2 cạnh góc vuông)
a. Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A, ta có:
BC2=AB2+AC2
152 = 92 +AC2
AC2 =152-92=144
AC=12 (cm)
Xét tam giác ABC: AC > AB (12 cm >9cm)
=> góc ABC>góc ACB ( quan hệ giữa góc và cạnh đối diện)
b. Ta có: góc BAC + góc DAC = 180* ( hai góc kề bù)
90* + góc DAC = 180*
=> góc DAC =180*-90*=90*
=> tam giác ADC vuông tại A.
Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A, ta có:
AB = AD (A là trung điểm của BD)
AC là cạnh chung
=> tam giác ABC= tam giác ADC ( hai cạnh góc vuông)
=> BC = DC ( hai cạnh tương ứng)
=> tam giác BDC cân tại C.
c. A là trung điểm của BD => CA là đường trung tuyến của tam giác BDC.
K là trung điểm của BC => DK là đường trung tuyến của tam giác BDC.
CA cắt t DK tại M=> M là trọng tâm của tam giác BDC.
=> CM =2/3CA
CM =2/3.12
CM = 8 (cm)
Vậy CM=8 cm
A B C D 4cm
a) Xét △ABD và △ABC có :
AB chung (gt)
AD = AC (gt)
\(\Rightarrow\)△ABD = △ABC (hai cạnh góc vuông)
b) Vì △ABD = △ABC
\(\Rightarrow\)BD = BC
\(\Rightarrow\)△BCD cân tại B
\(\Rightarrow\widehat{BCD}=\widehat{BDC}=60^o\)
\(\Rightarrow\widehat{CBD}=180^o-\left(\widehat{BCD}+\widehat{BDC}\right)\)
\(\Rightarrow\widehat{CBD}=60^o\)
Ta có : \(\widehat{CBD}=\widehat{BCD}=\widehat{BDC}=60^o\)
\(\Rightarrow\)△BCD là tam giác đều
c) Xét △ABC vuông tại A có \(\widehat{ACB}=60^o\)
\(\Rightarrow\)△ABC là tam giác nửa đều
\(\Rightarrow\)BC = 2AC
\(\Rightarrow\)BC = 8 cm
Vì AD = AC (gt)
\(\Rightarrow\)AD = 4cm
Vậy BC = 8 cm
AD = 4cm
B A D C Hình ảnh chỉ mang tính chất minh họa
a) Theo bài ra ta có \(\hept{\begin{cases}\widehat{CAB}=90^o\\\widehat{DAB}+\widehat{CAB}=180^o\end{cases}}\) ( 2 góc kề bù )
\(\Rightarrow\widehat{DAB}=90^o\)
+) Xét \(\Delta ABC\) vuông tại A và \(\Delta ABD\) vuông tại A có
AB : cạnh chung
AC = AD ( gt)
\(\Rightarrow\)\(\Delta ABC\) = \(\Delta ABD\) ( c-g-c )
b) Theo câu a ta có \(\Delta ABC\) = \(\Delta ABD\)
\(\Rightarrow BC=BD\) (2 cạnh tương ứng )
+) Xét \(\Delta BCD\) có
\(\hept{\begin{cases}BC=BD\\\widehat{C}=60^o\end{cases}}\left(gt\right)\)
\(\Rightarrow\)\(\Delta BCD\) là tam giác đều
cTheo bài ra ta có \(\hept{\begin{cases}AD=AC\\AC=4cm\end{cases}}\) ( gt)
\(\Rightarrow AD=4\) cm
+) Xét \(\Delta ABC\) vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{ABC}+60^o=90^o\)
\(\Rightarrow\widehat{ABC}=30^o\)
+) Xét \(\Delta ABC\) vuông tại A và \(\widehat{ABC}=30^o\)
\(\Rightarrow AC=\frac{1}{2}BC\) ( t/c trong 1 tam giác vuông có 1 góc = 30 độ thì cạnh đối diện vs góc 30 độ bằng 1 nửa cạnh huyền )
\(\Rightarrow BC=2.AC\)
\(\Rightarrow BC=2.4=8\) ( cm)
Vậy AD = 4 ( cm) và BC = 8 ( cm)
!! K chắc
@@ Học tốt
Chiyuki Fujito