K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

a b c h 3cm 2cm

Xét hai tam giác ahb và ahc, ta có:

* ab = ac [tam giác abc cân tại a]

* ah là cạnh chung [gt]

=> \(\Delta ahb=\Delta ahc\left[ch-cgv\right]\)

=> hb = hc = 2cm

=> bc = hc + hb = 2cm + 2cm = 4cm

Vậy bc = 4cm

25 tháng 12 2018

25 tháng 1 2022

tính BH đi

 

26 tháng 2 2018

tam giác ABC cân tại A -> AB=AC=AH+HC=5

Tam giác ABH vuông tại H. 

Theo pitago: AB2=AH2+BH<=> BH2=AB2-AH2=52-32=16 

=>BH=4

Tam giác BCH vuông tại H:

theo pitago: BC2=BH2+CH2=42+22=16+4=20

BC=\(\sqrt{20}\)

Nếu thấy hay hãy đăng ký trang youtube của mình nha: https://www.youtube.com/channel/UCdMJRiuo_35tKETQtnAYOBQ?view_as=subscriber

28 tháng 2 2018

Cảm ơn nhé

18 tháng 2 2022

\(\Rightarrow AC=10cm\)

\(\Rightarrow AB=10cm\) ( AB = AC )

Áp dụng định lý pitago vào tam giác vuông ABH

\(AB^2=AH^2+HB^2\)

\(\Rightarrow HB=\sqrt{AB^2-AH^2}=\sqrt{10^2-7^2}=\sqrt{51}\)

Áp dụng định lí pitago vào tam giác vuông BHC

\(BC^2=HC^2+HB^2\)

\(\Rightarrow BC=\sqrt{3^2+\sqrt{51}^2}=2\sqrt{15}\)

12 tháng 1 2016

Lê Xuân Trường

1-Xét tam giác ABH và tam giác ACH có

Góc AHB = Góc AHC = 90 độ

AC = AB (Do tam giác ABC cân tại A)

Góc ABH = Góc ACH(Do tam giác ABC cân tại A)

Suy ra tam giác ABH = tam giác ACH (cạnh huyền -góc nhọn )

Suy ra BH = CH =3 cm (2 cạnh tương ứng )

2 . Tui không biết làm thông cảm nhe !

 

 

Ta có: AC=AH+HC(H nằm giữa A và C)

nên AC=8+3=11(cm)

Ta có: ΔABC cân tại A(gt)

nên AB=AC(hai cạnh bên)

mà AC=11cm(cmt)

nên AB=11cm

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=11^2-8^2=57\)

hay \(BH=\sqrt{57}cm\)

Áp dụng định lí Pytago vào ΔBHC vuông tại H, ta được:

\(BC^2=BH^2+CH^2\)

\(\Leftrightarrow BC^2=\left(\sqrt{57}\right)^2+3^2=66\)

hay \(BC=\sqrt{66}cm\)

Vậy: \(BC=\sqrt{66}cm\)

Ta có: AC=AH+HC(H nằm giữa A và C)

nên AC=8+3=11(cm)

Ta có: ΔABC cân tại A(gt)

nên AB=AC(hai cạnh bên)

mà AC=11cm(cmt)

nên AB=11cm

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=11^2-8^2=57\)

hay \(BH=\sqrt{57}cm\)

Áp dụng định lí Pytago vào ΔBHC vuông tại H, ta được:

\(BC^2=BH^2+HC^2\)

\(\Leftrightarrow BC^2=\left(\sqrt{57}\right)^2+3^2=66\)

hay \(BC=\sqrt{66}cm\)

Vậy: \(BC=\sqrt{66}cm\)

d) Xét ΔHEB vuông tại E và ΔHFC vuông tại F có 

HB=HC(ΔABH=ΔACH)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔHEB=ΔHFC(Cạnh huyền-góc nhọn)

Suy ra: HE=HF(Hai cạnh tương ứng)