K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

Tự vẽ hình nha bạn!

Cm:

a)Xét \(\Delta ABD\) và \(\Delta ACE\)có:

\(\widehat{ADB}=\widehat{AEC}=90\)độ

\(\widehat{A}\)chung 

AB=AC (gt)

\(\Rightarrow\Delta ABD=\Delta ACE\)(cạnh huyền-góc nhọn)

=> AD=AE (2 cạnh tương ứng)

            (ĐPCM)

b) Vì AD=AE(cmt) =>\(\Delta ADE\)cân tại A

=> \(\widehat{AED}=\widehat{ADE}\)

\(\Delta ADE\)có: \(\widehat{A}+\widehat{AED}+\widehat{ADE}=180\)độ

\(\Rightarrow\widehat{AED}=\frac{180^0-\widehat{A}}{2}\)(1)

\(\Delta ABC\)cân tại A => \(\widehat{ABC}=\widehat{ACB}\)

\(\Delta ABC\)có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)

\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}\left(=\frac{180^0-\widehat{A}}{2}\right)\)

Mà 2 góc này ở vị trí đồng vị

=>DE//BC (đpcm)

c) Xét \(\Delta AIE\)và \(\Delta AID\)có:

\(\widehat{AEI}=\widehat{ADI}=90^0\)

AI chung

AE=AD (cmt)

=> \(\Delta AIE\)=\(\Delta AID\)(cạnh huyền-cạnh góc vuông)

=> \(\widehat{EAI}=\widehat{DAI}\)(2 góc tương ứng)

=> AI là tia phân giác của góc BAC (3)

Xét \(\Delta ABM\)và \(\Delta ACM\)có:

AM chung

BM=CM (gt)

AB=AC (gt)

=>\(\Delta ABM\)=\(\Delta ACM\)(c.c.c)

=>\(\widehat{BAM}=\widehat{CAM}\)(2 góc tương ứng)

=>AM là tia phân giác của góc BAC (4)

Từ (3) và (4) => A,I,M thẳng hàng (đpcm)

Câu d tớ chịu!

14 tháng 3 2017

bằng1

14 tháng 3 2017

A B C E D M I HÌNH NÈ

20 tháng 1 2019

a, ta cm đc tam giác ABD= tam giác ACE(ch-gn)

suy ra AD=AE

20 tháng 1 2019

b, xét tam giác AEI và tam giác ADI có: góc E=D =90 độ; AI chung; AE=AD(câu a)

suy ra góc EAI= góc DAI

suy ra AI là tia phân giác góc A

26 tháng 4 2018

a, Xét tam giác DAE và tam giác BAC có

      DAE = BAC ( đối đỉnh )

      AD = AB ( gt)

     AE= AC ( gt) 

=> tam giác DAE = tam giác BAC 

=> BC= DE

b, ta có  DAE = BAC = 90 độ ( 2 góc đối đỉnh )

 lại có BAD = CAE đối đỉnh 

=> BAD=CAE = 360 - (BaC + DAE)   tất cả trên 2 

<=> BAD= 360 -180  tâts cả trên 2 
<=> BAD = 180 trên 2

<=> BAD = 90 độ 

=> tam giác BAD vuông lại A

mà AB =AD (gt)

=> BAD vuông cân

=> DBA = BDA = 90 trên 2 = 45 độ

Chứng mình tương tự tam giác CAE vuông cân 

=>AEC=ACE= 90 trên 2 = 45 độ 

=> DBA=AEC=45 độ

mà chúng ở vị trí sole trong 

=> BD // CE

8 tháng 4 2018

help me

9 tháng 4 2018

a) Xét tam giác vuông ADB và tam giác vuông ACE có:

Góc A chung

AB = AC (gt)

\(\Rightarrow\Delta ABD=\Delta ACE\)   (Cạnh huyền - góc nhọn)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)

Xét tam giác vuông AEH và tam giác vuông ADH có:

Cạnh AH chung

AE = AD (cmt)

\(\Rightarrow\Delta AEH=\Delta ADH\)   (Cạnh huyền - cạnh góc vuông)

\(\Rightarrow HE=HD\)

c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.

Lại có AM cũng là đường cao nên AM đi qua H.

d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:

\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)   

Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)

Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)

\(=3EC^2+2EA^2+BC^2\).

19 tháng 12 2015

tra loi dc cho dung 

29 tháng 12 2015

bVì AB=BD

=>tg ABD cân tại B

mà BE là tia phân giác của góc B

=>BE cũng là đường cao=>BE vuông góc AD tại K