Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D F E H Ta có : \(\dfrac{HD}{AD}=\dfrac{S_{HBC}}{S_{ABC}}\)( Do có chung đáy BC nên tỉ số hai đường cao bằng tỉ số hai diện tích) ( *)
Tương tự , ta có : \(\dfrac{HE}{BE}=\dfrac{S_{HAC}}{S_{ABC}}\) (**) Và \(\dfrac{HF}{CF}=\dfrac{S_{HAB}}{S_{ABC}}\)(***)
Từ ( *; **; ***) Ta có được :
\(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{HAC}+S_{HBC}+S_{HAB}}{S_{ABC}}=\dfrac{S_{ABC}}{S_{ABC}}=1\)
ta có: \(\dfrac{HD}{AD}=\dfrac{\Delta HBC}{\Delta ABC}\\ \dfrac{HE}{BE}=\dfrac{\Delta HAC}{\Delta ABC}\\ \dfrac{HF}{CF}=\dfrac{\Delta AHB}{\Delta ABC}\)
khi đó: \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{\Delta HBC}{\Delta ABC}+\dfrac{\Delta HAC}{\Delta ABC}+\dfrac{\Delta HAB}{\Delta ABC}\\ =\dfrac{\Delta ABC}{\Delta ABC}=1\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \left(đpcm\right)\)
< Bạn tự vẽ hình nha>
a)Xét ΔABE và ΔACF, ta có:
góc A: chung
góc F=góc E= 90o
Vậy ΔABE ∼ ΔACF (g.g)
b)Xét ΔHEC và ΔHFB là:
góc H: chung
H1=H2(đối đỉnh)
Vậy ΔHEC∼ ΔHFB (g.g)
⇒\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC
<Mình chỉ biết đến đó thôi>
Lời giải:
câu c)
Ta có: \(\frac{HD}{AD}=\frac{HD.BC}{AD.BC}=\frac{2S_{BHC}}{2S_{ABC}}=\frac{S_{HBC}}{S_{ABC}}\)
\(\frac{HE}{BE}=\frac{HE.AC}{BE.AC}=\frac{2S_{AHC}}{2S_{ABC}}=\frac{S_{AHC}}{S_{ABC}}\)
\(\frac{HF}{CF}=\frac{HF.AB}{CF.AB}=\frac{2S_{AHB}}{2S_{ABC}}=\frac{S_{AHB}}{S_{ABC}}\)
Cộng theo vế các đẳng thức vừa thu được:
\(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\frac{S_{HBC}+S_{AHC}+S_{AHB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
Ta có đpcm.
A B C D E F H
Ta có: \(\dfrac{AD.BC}{2}=S_{ABC}\Rightarrow AD=\dfrac{2S_{ABC}}{BC}\)
\(\Rightarrow\dfrac{HD}{AD}=\dfrac{HD.BC}{2S_{ABC}}\)
Tương tự: \(\dfrac{HE}{BE}=\dfrac{HE.AC}{2S_{ABC}};\dfrac{HF}{CF}=\dfrac{HF.AB}{2S_{ABC}}\)
\(\Rightarrow\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{BHC}+S_{AHC}+S_{AHC}}{S_{ABC}}=1\)