K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 12 2020

\(OE=OB=\dfrac{1}{2}BC\Rightarrow\widehat{OBE}=\widehat{OEB}\)

\(\widehat{AHE}=\widehat{BHO}\) ; \(\widehat{BHO}+\widehat{HBD}=90^0\)

\(\Rightarrow\widehat{AHE}+\widehat{HBD}\left(\widehat{OBE}\right)=90^0\)

\(\Rightarrow\widehat{AHE}+\widehat{OEB}=90^0\)

\(IE=IH=r\Rightarrow\widehat{AHE}=\widehat{IEH}\)

\(\Rightarrow\widehat{IEH}+\widehat{OEB}=90^0\Rightarrow IE\perp OE\)

21 tháng 12 2020

^AHE=^BHD chứ ạ?

27 tháng 5 2018

a) Ta có \(\widehat{BNC}=\widehat{BMC}=90độ\)(gt)

Nên tứ giác BNMC nội tiếp (2 đỉnh N,M cùng BC với 2 góc bằng nhau)

(Câu sau không rõ. Cái gì là tâm đường tròn nội tiếp ΔMNH?)

b) Xét ΔAMN và ΔABC có:

\(\widehat{BAC}\)chung

\(\widehat{AMN}=\widehat{ABC}\)(tứ giác BNMC nội tiếp)

Do đó ΔAMN ~ ΔABC

Nên\(\frac{AM}{AB}=\frac{AN}{AC}\)

hay AM.AC=AN.AB

Ta có \(\widehat{ANH}=\widehat{AMH}=90độ\left(gt\right)\)

Nên \(\widehat{ANH}+\widehat{AMH}=180độ\)

Suy ra tứ giác ANHM nội tiếp

Do đó \(\widehat{NAM}+\widehat{NHM}=180độ\)

\(\widehat{NHM}=\widehat{BHC}\)(đối đỉnh)

    \(\widehat{BHC}=\widehat{BLC}\)(tính chất đối xứng trục)

Nên \(\widehat{NAM}+\widehat{BLC}=180độ\)

Suy ra tứ giác ABLC nội tiếp đường tròn (O) (tổng 2 góc đối bằng 180độ)

c) (Câu này hình như bạn ghi sai đề rồi, nếu I là giao điểm AH với AN thì I sẽ trùng với A. Nên mình nghĩ I là giao điểm MN với AH)

Ta có \(\widehat{HDC}=\widehat{HMC}=90độ\left(gt\right)\)

Nên \(\widehat{HDC+}\widehat{HMC}=180độ\)

Do đó tứ giác HMCD nội tiếp

Suy ra \(\widehat{HMD}=\widehat{HCD}\)

\(\widehat{HCD}=\widehat{HMN}\)(tứ giác BMNC nội tiếp)

Nên \(\widehat{HMD}=\widehat{HMN}\)

Vậy MH là phân giác \(\widehat{NMD}\)

Mà MH vuông góc AM (gt)

Nên AM là phân giác ngoài

Do đó \(\frac{IH}{ID}=\frac{AH}{AD}\)

hay IH.AD=AH.ID

a.Ta có :
ˆAFH=ˆADB=90o→ΔAFH∼ΔADB(g.g)

→AFAD=AHAB→AF.AB=AH.AD

Tương tự AH.AD=AE.AC→AF.AB=AE.AC

b.Ta có  :
ˆHFA=ˆHEA=ˆHFB=ˆHDB=90o

→AEHF,AEDB,FHDB nội tiếp

→ˆHFE=ˆFAE=ˆHBD=ˆHFD

→FH là phân giác ˆDFE
Mà FA⊥FH→FA là phân giác góc ngoài tại đỉnh F của ΔDEF

→HIHD=FIFD=AIAD

→IH.AD=AI.DH

11 tháng 12 2015

a, Gọi T là trung điểm AH             

Tam giác AFH vuông tại F => AT=TF=TH (1)

Tam giác AEH vuông tại E => ET=AT=TH (2)

(1) và (2) => A,H,E,F cùng thuộc đường tròn tâm T

b, Tam giác EBC vuông tại E => EO=OC =>Tam giác EOC cân tại O => góc OEC = góc OCE  ( 1 )

Tam giác AEH đồng dạng tam giác ADC ( g-g ) => góc AHE = góc ACD ( 2 )

Theo chứng minh phần a => tam giác TEH cân tại E => góc TEH = góc THE ( 3 )

Từ (1),(2)và (3) => góc OEC = góc IEH

Ta có :góc IEO = IEH + HEO = HEO + OEC = 90 độ

=> IE vuông góc EO => OE là tiếp tuyến của ( T )  

a: góc AEH=góc AFH=90 độ

=>AEHF nội tiếp đường tròn tâm I, I là trung điểm của AH

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp đường tròn đường kính BC

=>O là trung điểm của BC

c: góc IEO=góc IEH+góc OEH

=góc IHE+góc OBE

=góc OBE+góc OCE=90 độ

=>IE là tiếp tuyến của (O)

d: IE=IF

OE=OF
=>IO là trung trực của EF

22 tháng 11 2022

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI

c: G là trọng tâm

nên AG=2AI

Xét ΔAHD có

AI là trung tuyến

AG=2/3AI

DO đó: G là trọng tâm