Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D H E
a) Xét \(\Delta\)BAM và \(\Delta\)CDM có:
MB=MC
^AMB=^DMC => \(\Delta\)BAM=\(\Delta\)CDM (c.g.c)
MA=MD
=> AB=DC (2 cạnh tương ứng). Mà AB<AC =>DC<AC => ^DAC<^ADC (Qhệ góc và cạnh đối diện)
^ADC=^BAM (2 góc tương ứng) => ^BAM>^CAM hay ^MAB>^MAC (đpcm)
b) AH \(⊥\)BC , AC>AB => HC>HB (Qhệ đường xiên hình chiếu)
E nằm giữa A và H => EH\(⊥\)BC, HC>HB => EC>EB.
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hbh
=>CD=AB
=>CD>AC
=>góc CAD>góc ADC
b: Xét ΔABC có AC<AB
mà HC,HB lần lượt là hình chiếu của AC,AB trên BC
nên HC<HB
Xét ΔECB có
HC<HB
HC,HB lần lượt là hình chiếu của EC,EB trên BC
=>EC<EB
Câu hỏi của nguyễn quang minh - Toán lớp 7 - Học toán với OnlineMath
c. Vì AB < AC ⇒ HB < HC (quan hệ giữa hình chiếu và đường xiên) (1 điểm)
Vì HB < HC ⇒ BE < EC (quan hệ giữa hình chiếu và đường xiên) (1 điểm)
A B C M D H E
Nãy làm xong ấn f5 mất cái hình đẹp,tức ghê,giờ không làm kỹ nữa.Bạn tự ký hiệu vô hình
a) Dễ chứng minh tam giác MAB = tam giác MDC (c.g.c)
Suy ra AB = CD (hai cạnh tương ứng)
b)*chứng minh góc ADC > góc DAC
Xét tam giác ACD,theo quan hệ giữa góc và cạnh đối diện,ta cần chứng minh AC > CD = AB
Điều này hiển nhiên đúng do giả thiết đề bài,
*chứng minh góc MAB > góc MAC
Từ kết quả câu a) suy ra góc MAB = góc MDC
Ta cần chứng minh MDC > MAC
Theo đề bài dễ có A,M,D thẳng hàng (do AM và MD là hai tia đối nhau)
Suy ra góc MDC = ADC
MAC = DAC
Từ kết quả phía trên ta suy ra góc ADC = góc MDC > góc DAC = MAC
c)*So sánh HC và HB
Do AB < AC theo quan hệ giữa hình chiếu và đường xiên suy ra HB < HC
*So sánh EB và EC
Do HB < HC nên cũng theo quan hệ giữa hình chiếu và đường xiên,suy ra EB < EC
Vậy....
P/s: Lâu không làm dạng này nên mình không chắc,nhất là câu c ấy
A B C H D
Xét tam giác ABC có góc B > góc C suy ra AC > AB
Xét tam giác vuông ABH và tam giác vuông ACH
chung AH
có AC > AB (CMT)
suy ra HC > HB
c) Vì HC > HB (CMT)
Xét tam giác vuông BHD và tam giác vuông CHD
Có chung DH , BC >HB nên DC >DB
Xét tam giác BDC có DC > DB nên góc DBC > góc DCB
Bài 16:
A B C M D
Xét tam giác ABM và tam giác DCM
có AM=DM (GT)
góc AMB=góc DMC (đối đỉnh)
BM=MC (GT)
suy ra tam giác ABM=tam giác DCM (c.g.c) (1)
b) Từ (1) suy ra góc MAB = góc MDC (hai góc tuơng ứng)
mà góc MAB so le trong góc MDC
suy ra AB // CD
c) Từ (1) suy ra AB = CD
Xét tam giác ACD có AC + CD > AD
mà AD=2AM, AB=CD (CMT)
suy ra AC +AB >2AM