K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Xét \(\Delta\) NAM và \(\Delta\)BAC có:

\(\frac{BA}{AC}=\frac{4}{5};\frac{NA}{AM}=\frac{4}{5}\)

^A_chung

Vậy\(\Delta\)NAM đồng dạng\(\Delta\) BAC (c.g.c) 

=> đpcm

 b, Xét \(\Delta\)NAB và \(\Delta\)MAC ta có :

 \(\frac{AM}{AC}=\frac{1}{3};\frac{AN}{AB}=\frac{1}{3}\)

\(\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)

^A_chung

Vậy \(\Delta\)NAB đồng dạng với \(\Delta\)MAC (c.g.c)

=>  ^ANB = ^AMC

=> \(\Delta\)BOM đồng dạng với \(\Delta\)COM(gg)

Vì có ^ABN = ^ACM ; ^MOB = ^NOC (đđ)

=> \(\frac{OM}{OB}=\frac{ON}{OC}\Rightarrowđpcm\)          

26 tháng 3 2020

câu a mình ko hiểu

18 tháng 9 2018

Hình vẽ bn tự vẽ

Vì tam giác ABC đều nên góc BAC=60 độ

Mà góc EAD=góc BAC

Suy ra: góc EAD=60 độ

Ta lại có: AE=AD(gt)

Suy ra: tam AED đều có DM là đg trung tuyến

Suy ra DM cũng là đường cao

Xét tam giác vuông DMC có:

\(MP=\frac{1}{2}CD\)(1)

Tương tự: CN vuông góc AB

Xét tam giác vuông CND có: 

\(NP=\frac{1}{2}CD\)(2)

Chứng minh tam giác AEB= tam giác ADC (c.g.c) bn tự chứng minh

Suy ra: CD=BE

Mà tam giác AEB có: MN là đường trung bình

Suy ra: \(MN=\frac{1}{2}BE\)

Suy ra: \(MN=\frac{1}{2}CD\)(Vì BE=CD) (3)

Từ (1);(2) và (3)

Vậy tam giác MNP đều

Chúc bn học tốt.

Mik đi hc đến 8h30 tối mới về nên làm hơi trễ

a: Xét tứ giác ACBD có 

M là trung điểm của AB

M là trung điểm của CD

Do đó: ACBD là hình bình hành

b: Xét ΔABC có 

N là trung điểm của BC

P là trung điểm của AC

Do đó: NP là đường trung bình

=>NP=AB/2 và NP//AB

Xét tứ giác ABNQ có 

NQ//AB

AQ//BN

Do đó: ABNQ là hình bình hành

Suy ra: NQ=AB

=>NQ=2NP

=>P là trung điểm của NQ

Xét tứ giác ANCQ có

P là trung điểm của AC

P là trung điểm của NQ

Do đó: ANCQ là hình bình hành

mà NA=NC

nên ANCQ là hình thoi