Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu e) thui hả
kẻ \(MH\perp AB,MK\perp AC,CL\perp AB\)
ta có bổ đề sau
\(sin\left(22\right)=2sin2.cos2.AD\)zô bài toán
à quen ko đc dùng sin cos tan
a) Xét ΔABC có
AM là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
Xét ΔABC có
BN là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{NC}{NA}=\dfrac{BC}{AB}\)(Tính chất đường phân giác của tam giác)
Xét ΔABC có
CP là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{PA}{PB}=\dfrac{AC}{BC}\)(Tính chất đường phân giác của tam giác)
Ta có: \(\dfrac{MB}{MC}\cdot\dfrac{NC}{NA}\cdot\dfrac{PA}{PB}\)
\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)
\(=\dfrac{AB\cdot AC\cdot BC}{AB\cdot AC\cdot BC}=1\)(đpcm)
Lời giải:
$AB,BC,AC$ tỉ lệ với $4,7,5$ \(\Leftrightarrow \frac{AB}{4}=\frac{BC}{7}=\frac{CA}{5}(*)\)
a) Sử dụng công thức đường phân giác kết hợp với \((*)\) ta có:
\(\frac{MC}{BM}=\frac{AC}{AB}=\frac{5}{4}\)
\(\Rightarrow \frac{MC}{BM+MC}=\frac{5}{4+5}\Leftrightarrow \frac{MC}{BC}=\frac{5}{9}\)
\(\Rightarrow MC=\frac{5}{9}BC=\frac{5}{9}.18=10\) (cm)
b) Sử dụng công thức đường phân giác kết hợp với \((*)\) ta có:
\(\frac{NC}{NA}=\frac{BC}{AB}=\frac{7}{4}\)\(\Leftrightarrow \frac{NC}{7}=\frac{NA}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{NC+NA}{7+4}=\frac{NC}{7}=\frac{NA}{4}=\frac{NC-NA}{7-4}\)
\(\Leftrightarrow \frac{AC}{11}=\frac{3}{3}=1\Rightarrow AC=11\) (cm)
c)
Vì $AO$ là phân giác góc $PAC$, $BO$ là phân giác góc $PBC$ nên áp dụng công thức đường phân giác:
\(\frac{OP}{OC}=\frac{AP}{AC}=\frac{BP}{BC}\)
AD tính chất dãy tỉ số bằng nhau:
\(\frac{OP}{OC}=\frac{AP}{AC}=\frac{BP}{BC}=\frac{AP+BP}{AC+BC}=\frac{AB}{AC+BC}\)
Theo \((*)\Rightarrow AC=\frac{5}{4}AB; BC=\frac{7}{4}AB\)
\(\frac{OP}{OC}=\frac{AB}{AC+BC}=\frac{AB}{\frac{5}{4}AB+\frac{7}{4}AB}=\frac{AB}{3AB}=\frac{1}{3}\)
d) Áp dụng công thức đường phân giác:
\(\left\{\begin{matrix} \frac{MB}{MC}=\frac{AB}{AC}\\ \frac{NC}{NA}=\frac{BC}{AB}\\ \frac{PA}{PB}=\frac{AC}{BC}\end{matrix}\right.\Rightarrow \frac{MB}{MC}.\frac{NC}{NA}.\frac{PA}{PB}=\frac{AB}{AC}.\frac{BC}{AB}.\frac{AC}{BC}=1\)
(đpcm)
Chứng minh \(\frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}>\frac{1}{AB}+\frac{1}{BC}+\frac{1}{AC}\)
Kẻ \(MH\perp AB, MK\perp AC, CL\perp AB\)
Ta có bổ đề sau: \(\sin (2\alpha)=2\sin \alpha\cos \alpha\)
Chứng minh :
Thật vậy, xét một tam giác $ABC$ vuông tại $A$ có đường cao $AH$ và trung tuyến $AM$, góc \(\angle ACB=\alpha\)
Khi đó: \(AM=MB=MC=\frac{BC}{2}\Rightarrow \triangle AMC\) cân tại $M$
\(\Rightarrow \angle MAC=\angle MCA=\alpha\)
\(\Rightarrow \angle HMA=\angle MAC+\angle MCA=2\alpha\)
\(\Rightarrow \sin 2\alpha=\sin HMA=\frac{HA}{MA}=\frac{HA}{\frac{BC}{2}}=\frac{2HA}{BC}\) (1)
Lại có: \(\sin \alpha=\sin \angle ACB=\frac{AH}{AC}\)
\(\cos \alpha=\frac{AC}{BC}\)
\(\Rightarrow \sin \alpha\cos \alpha=\frac{AH}{AC}.\frac{AC}{BC}=\frac{AH}{BC}\) (2)
Từ (1); (2) suy ra \(\sin 2\alpha=2\sin \alpha\cos \alpha\) (đpcm)
------------------------------
Áp dụng vào bài toán:
Ta có: \(\sin A=2\sin \frac{A}{2}\cos \frac{A}{2}\)
\(S_{ABM}+S_{AMC}=S_{ABC}\)
\(\Leftrightarrow \frac{MH.AB}{2}+\frac{MK.AC}{2}=\frac{CL.AB}{2}\)
\(\Leftrightarrow AB.\sin \frac{A}{2}.AM+\sin \frac{A}{2}.AM.AC=\sin A.AC.AB\)
\(\Leftrightarrow AM=\frac{\sin A.AB.AC}{\sin \frac{A}{2}.AB+\sin \frac{A}{2}.AC}=\frac{2\sin \frac{A}{2}\cos \frac{A}{2}.AB.AC}{\sin \frac{A}{2}.AB+\sin \frac{A}{2}.AC}\)
\(\Leftrightarrow AM=\frac{2\cos \frac{A}{2}.AB.AC}{AB+AC}\)
\(\Leftrightarrow \frac{1}{AM}=\frac{AB+AC}{2AB.AC\cos \frac{A}{2}}=\frac{1}{2\cos \frac{A}{2}}(\frac{1}{AB}+\frac{1}{AC})\)
Tương tự: \(\frac{1}{BN}=\frac{1}{2\cos \frac{B}{2}}(\frac{1}{BA}+\frac{1}{BC})\)
\(\frac{1}{CP}=\frac{1}{2\cos \frac{C}{2}}(\frac{1}{CB}+\frac{1}{CA})\)
Cộng theo vế:
\(\frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}=\frac{1}{2\cos \frac{A}{2}}(\frac{1}{AB}+\frac{1}{AC})+\frac{1}{2\cos \frac{B}{2}}(\frac{1}{BA}+\frac{1}{BC})+\frac{1}{2\cos \frac{C}{2}}(\frac{1}{CA}+\frac{1}{CB})\)
\(> \frac{1}{2}(\frac{1}{AB}+\frac{1}{AC})+\frac{1}{2}(\frac{1}{BC}+\frac{1}{AC})+\frac{1}{2}(\frac{1}{CB}+\frac{1}{CA})\) (do \(\cos \alpha < 1\) vì cạnh góc vuông luôn nhỏ hơn cạnh huyền)
\(\Leftrightarrow \frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}> \frac{1}{AB}+\frac{1}{BC}+\frac{1}{CA}\)
Ta có đpcm.
Lớp 8 chưa học tỉ số lượng giác đâu cô