Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xet 2 tgAEI va tgADI co AI=AI;EI=DI;gEAI=gDAI=gBAC/2
tuc la truong hop c.c.g
xet 2 truong hop
1)AD=AE=>tgAIE=tgAID=>gAEC=gADB
=>gB/2+gC=gB+gC/2
=>2B+C=2C+B=>180-A+B=180-A+C=>B=C dpcm
2)AD>AE tren AD lay P sao cho AP=AE=> tgAEI=tgAPI
=>gAEI=gAPI =gB+gC/2 va IP=ID(=EI)
=>gIPD=gIDP=gB/2+gC
Mat khac gAPI+gIPD=180
=> gB/2+gC+gC/2+gB=180
=> gB+gC=120 =>gA=60
(neu AD<AE xet tuong tu)
a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ
Câu hỏi của giang ho dai ca - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Cách 1:
Kẻ \(IH\perp AB,IK\perp AC\).Ta có \(\Delta IHE=\Delta IKD\)(cạnh huyền-cạnh góc vuông)
\(\Rightarrow\widehat{IEH}=\widehat{IDK}\) (1)
Xét 4 trường hợp :
a) H thuộc đoạn BE ,K thuộc đoạn CD ( hình a)
Từ (1) \(\Rightarrow\widehat{A}+\frac{\widehat{C}}{2}=A+\widehat{\frac{B}{2}}\) ,do đó \(\widehat{C}=\widehat{B}\)
A E H I D K B C Hình a
A K D E H B C I Hình b
b) H thuộc đoạn BE,K thuộc đoạn AD.Chứng min tương tự như phần a ta được \(\widehat{C}=\widehat{B}\)
c) H thuộc đoạn AE ,K thuộc đoạn AD (hình b )
Từ (1) ta có :
\(\widehat{A}+\frac{\widehat{C}}{2}=A+\widehat{\frac{B}{2}}\)
\(\Rightarrow\widehat{A}=\widehat{\frac{B}{2}}+\widehat{\frac{C}{2}}\)
\(\Rightarrow2\widehat{A}=\widehat{B}+\widehat{C}\)
\(\Rightarrow3\widehat{A}=\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}=60^o,\widehat{B}+\widehat{C}=120^o.\)
d) H thuộc đoạn AE,K thuộc đoạn CD.Chứng min tương tự như phần c ta được : \(\widehat{B}+\widehat{C}=120^o\).
Cách 2
Không mất tín tổng quát,giả sử \(AD\ge AE\).Xét 2 trường hợp :
a) Trường hợp AD= AE ( hình c)
\(\Delta ADI=\Delta AEI\left(c.c.c\right)\Rightarrow\widehat{ADI}=\widehat{AEI}\)
\(\Delta ADB\)và \(\Delta AEC\) có \(\widehat{A}\) chung,\(\widehat{ADI}=\widehat{AEI}\)nên \(\widehat{B}_1=\widehat{C}_1.\)
Do đó \(\widehat{B}=\widehat{C}\)
A E D B C I 1 2 1 2 Hình c
A F E B C D I 1 1 1 Hình d
b) Trường hợp AD>AE.Lấy F trên AD sao cho À=AE (hình d)
\(\Delta AFI=\Delta AEI\left(c.g.c\right)\Rightarrow IF=IE,\widehat{F_1}=\widehat{E}_1\)
Do IE=ID nên IF =ID,do đó \(\widehat{F_1}=\widehat{D_1}\).
\(\Rightarrow\widehat{D_1}=\widehat{E_1}\),tức là \(\widehat{A}+\widehat{\frac{B}{2}}=\widehat{B}+\frac{\widehat{C}}{2}.\)
Biến đổi như cách 1,ta được \(\widehat{B}+\widehat{C}=120^o\).
P/s:Hình xấu :)
Xét ΔIDE có \(\widehat{IDE}=\widehat{IED}\)
nên ΔIDE cân tại I
hay ID=IE
Kham khảo
Câu hỏi của Nguyễn Vũ Thu Hương - Toán lớp 7 - Học toán với OnlineMath
vào thống kê mk , thấy chữ màu xanh trog câu tl này ấn zô đó sẽ ra
Hc tốt
a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ
Bài 1:
A B C I E D H
Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)
Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)
Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)
Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)
Xét \(\Delta EAI\) và \(\Delta HAI\) có:
\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)
\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)
\(AI\) chung
\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)
\(\Rightarrow IE=IH\left(1\right)\)
Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)
\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)
2. A B C H K D E
Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)
=> BD = BE
Ta có: BD là phân giác ^ABC => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)
(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)
=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)
Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)
=> \(\Delta\)DEC cân tại E => DE = EC (3)
Từ D kẻ vuông góc với BC tại H và BA tại K.
D thuộc đường phân giác ^ABC ( theo t/c đường phân giác ) => DK = DH
Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED
=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )
=> DA = DE (4)
Từ (3) ; (4) => DA = EC
Vậy BC = BE + EC = BD + AD
Câu hỏi của giang ho dai ca - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Sao e ko thấy gì z co