K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

Câu hỏi của giang ho dai ca - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại link trên nhé.

11 tháng 5 2020

Sao e ko thấy gì z co

20 tháng 6 2017

vào đây

11 tháng 5 2020

Aki Tsuki thank youyeu

17 tháng 5 2015

xet 2 tgAEI va tgADI co AI=AI;EI=DI;gEAI=gDAI=gBAC/2 
tuc la truong hop c.c.g 
xet 2 truong hop 
1)AD=AE=>tgAIE=tgAID=>gAEC=gADB 
=>gB/2+gC=gB+gC/2 
=>2B+C=2C+B=>180-A+B=180-A+C=>B=C dpcm 
2)AD>AE tren AD lay P sao cho AP=AE=> tgAEI=tgAPI 
=>gAEI=gAPI =gB+gC/2 va IP=ID(=EI) 
=>gIPD=gIDP=gB/2+gC 
Mat khac gAPI+gIPD=180 
=> gB/2+gC+gC/2+gB=180 
=> gB+gC=120 =>gA=60 
(neu AD<AE xet tuong tu)

22 tháng 2 2020

a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB  =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên 
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ

10 tháng 1 2018

Câu hỏi của giang ho dai ca - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại link trên nhé.

3 tháng 6 2018

Cách 1:

Kẻ \(IH\perp AB,IK\perp AC\).Ta có \(\Delta IHE=\Delta IKD\)(cạnh huyền-cạnh góc vuông)

 \(\Rightarrow\widehat{IEH}=\widehat{IDK}\)          (1)

Xét 4 trường hợp :

a) H thuộc đoạn BE ,K thuộc đoạn CD ( hình a)

Từ (1) \(\Rightarrow\widehat{A}+\frac{\widehat{C}}{2}=A+\widehat{\frac{B}{2}}\) ,do đó \(\widehat{C}=\widehat{B}\)

A E H I D K B C Hình a

A K D E H B C I Hình b

b) H thuộc đoạn BE,K thuộc đoạn AD.Chứng min tương tự như phần a ta được \(\widehat{C}=\widehat{B}\) 

c)  H thuộc đoạn AE ,K thuộc đoạn AD (hình b )

Từ (1) ta có : 

\(\widehat{A}+\frac{\widehat{C}}{2}=A+\widehat{\frac{B}{2}}\)

\(\Rightarrow\widehat{A}=\widehat{\frac{B}{2}}+\widehat{\frac{C}{2}}\)

\(\Rightarrow2\widehat{A}=\widehat{B}+\widehat{C}\)

\(\Rightarrow3\widehat{A}=\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{A}=60^o,\widehat{B}+\widehat{C}=120^o.\)

d) H thuộc đoạn AE,K thuộc đoạn CD.Chứng min tương tự như phần c ta được : \(\widehat{B}+\widehat{C}=120^o\).

Cách 2

Không mất tín tổng quát,giả sử \(AD\ge AE\).Xét 2 trường hợp :

a) Trường hợp AD= AE ( hình c)

\(\Delta ADI=\Delta AEI\left(c.c.c\right)\Rightarrow\widehat{ADI}=\widehat{AEI}\)

\(\Delta ADB\)và \(\Delta AEC\) có \(\widehat{A}\) chung,\(\widehat{ADI}=\widehat{AEI}\)nên \(\widehat{B}_1=\widehat{C}_1.\)

Do đó \(\widehat{B}=\widehat{C}\)

A E D B C I 1 2 1 2 Hình c

A F E B C D I 1 1 1 Hình d

b) Trường hợp AD>AE.Lấy F trên AD sao cho À=AE (hình d)

\(\Delta AFI=\Delta AEI\left(c.g.c\right)\Rightarrow IF=IE,\widehat{F_1}=\widehat{E}_1\)

Do IE=ID nên IF =ID,do đó \(\widehat{F_1}=\widehat{D_1}\).

\(\Rightarrow\widehat{D_1}=\widehat{E_1}\),tức là \(\widehat{A}+\widehat{\frac{B}{2}}=\widehat{B}+\frac{\widehat{C}}{2}.\)

Biến đổi như cách 1,ta được \(\widehat{B}+\widehat{C}=120^o\).

P/s:Hình xấu :) 

Xét ΔIDE có \(\widehat{IDE}=\widehat{IED}\)

nên ΔIDE cân tại I

hay ID=IE

Kham khảo

Câu hỏi của Nguyễn Vũ Thu Hương - Toán lớp 7 - Học toán với OnlineMath

vào thống kê mk , thấy chữ màu xanh trog câu tl này ấn zô đó sẽ ra 

Hc tốt 

22 tháng 2 2020

a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB  =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên 
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ

20 tháng 1 2020

Bài 1: 

A B C I E D H

Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)

Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)

Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\) 

Từ   \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)

Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)

Xét \(\Delta EAI\) và \(\Delta HAI\) có:

\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)

\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)

\(AI\) chung

\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)

\(\Rightarrow IE=IH\left(1\right)\)

Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)

\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)

21 tháng 1 2020

2. A B C H K D E

Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)

=> BD = BE 

Ta có: BD là phân giác ^ABC  => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)

(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)

=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)

Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)

=> \(\Delta\)DEC cân tại E => DE = EC (3)

Từ D kẻ vuông góc với BC tại H và BA tại K.

D thuộc đường phân giác ^ABC  ( theo t/c đường phân giác ) => DK = DH 

Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED 

=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )

=> DA = DE (4)

Từ (3) ; (4) => DA = EC 

Vậy BC = BE + EC = BD + AD