Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
=>AM vuông góc DE
ΔADE cân tại A
có AM là đường cao
nên AM là phân giác của góc DAE
A B C D E M
a, Xét \(\Delta\)ABD và \(\Delta\)ACE ta có :
AB = AC (do tam giác ABD cân đỉnh A)
BD = CE (GT)
\(\widehat{ABD}=\widehat{ACE}\left(GT\right)\)
=> \(\Delta\)ABD = \(\Delta\)ACE (c-g-c)
=> AD = AE (2 cạnh tương ứng)
=> \(\Delta\)ADE cân đỉnh A
b, Ta có : BD + BM = CE + CM <=> DM = EM
Xét \(\Delta\)AMD và \(\Delta\)AME ta có
AD = AE (cma)
AM chung
DM = EM (cmt)
=> \(\Delta\)AMD = \(\Delta\)AME (c-c-c)
=> \(\widehat{MAD}=\widehat{MAE}\)( 2 góc tương ứng )
=> AM là p/g \(\widehat{DAE}\)
Ta có : \(\Delta AMD=\Delta AME\)
=> \(\widehat{AMD}=\widehat{AME}\)Mà \(\widehat{AMD}+\widehat{AME}=180^0\)
Vì \(\widehat{AMD}=\widehat{AME}\)Suy ra : \(\widehat{AMD}=\widehat{AME}=\frac{180^0}{2}=90^0\)
Vậy ta có đpcm
A B C D E M
a, Ta có:
góc B + góc ABD = 180độ ( vì ABD là góc ngoài của tam giác ABC tại B )
góc C + góc ACE = 180độ ( vì ACE là góc ngoài của tam giác ABC tại C )
mà góc B = góc C ( vì tam giác ABC cân tại A )
\(\Rightarrow\) góc ABD = góc ACE
Xét tam giác ABD và tam giác ACE có
AB = AC
góc ABD = góc ACE ( theo chứng minh trên )
BD = CE ( gt )
Do đó : tam giác ABD = tam giác ACE (c.g.c)
\(\Rightarrow\)AD = AE và góc D = góc E
Vậy tam giác ADE là tam giác cân tại A
b,Vì M là trung điểm của BC nên
BM = CM
và BD = CE
\(\Rightarrow\)BM + BD = CM + CE
\(\Rightarrow\)MD = ME
Xét tam giác AMD và tam giác AME có
cạnh AM chung
AD = AE ( theo câu a )
MD = ME ( theo chứng minh trên )
Do đó : tam giác AMD = tam giác AME ( c.c.c )
\(\Rightarrow\)góc MAD = góc MAE
Vậy AM là tia phân giác góc DAE
Học tốt !
a: Xet ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc DAE
c: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
d: Xét ΔAED có
AH/AD=AK/AE
nên HK//DE
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc DAE
c: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
=>ΔAHB=ΔAKC
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
A, xét tam giác ABD và tam giác ACE có
AB = AC ( tam giác ABC cân tại A)
MK Góc ABD + ABC = 180 độ
lại có góc ACE + ACB = 180 độ
mà góc ABC = ACB(tam giác ABC cân tại A)
=> Góc ABD =ACE
BD = CE ( GT )
nên tam giác ABD = tam giác ACE (C-G-C)
=> góc ADB = góc AEC
=> tam giác AED cân tại A
b,xét tam giác DAM và tam giác EAM có
AD = AE ( cm a, )
AM cạnh cung
mk có MB=MC(M TĐ BC) (1)
ta lại có BD = CE ( GT) (2)
từ (1) và (2) ta có
DB+BM =CE + MC
hay DM = ME
nên tam giác DAM = tam giác EAM ( C-C-C )
=> góc MAD = MAE
=>AM ph/G góc DAE
c, xét tam giác BAH và tam giác CAK có
góc BHA=CKA ( = 1 vuông )
AC =AB ( tam giác ABC cân tại A)
góc BAH = CAK ( tam giác ABD = tam giác ACE)
nên tam giác BAH = tam giác CAK ( cạnh huyền góc nhọn )
=> BH = CK
a) Xét ΔABDΔABD và ΔACEΔACE có:
AB=ACAB=AC (do ΔABCΔABC cân đỉnh A)
ˆABD=ˆACEABD^=ACE^ (cùng +45o+45o=180^o)
BD=CEBD=CE (giả thiết)
⇒ΔABD=ΔACE⇒ΔABD=ΔACE (c.g.c)
⇒AD=AE⇒AD=AE (hai cạnh tương ứng)
⇒ΔADE⇒ΔADE cân đỉnh A
b) Ta có: BD+BM=CE+CM⇒DM=EMBD+BM=CE+CM⇒DM=EM
Xét ΔAMDΔAMD và ΔAMEΔAME có:
AD=AEAD=AE (cmt)
AMAM chung
DM=EMDM=EM (cmt)
⇒ΔAMD=ΔAME⇒ΔAMD=ΔAME (c.c.c)
⇒ˆMAD=ˆMAE⇒MAD^=MAE^ (hai góc tương ứng)
⇒AM⇒AM là phân giác ˆDAEDAE^ (đpcm)
Ta có ΔAMD=ΔAME⇒ˆAMD=ˆAMEΔAMD=ΔAME⇒AMD^=AME^
Mà ˆAMD+ˆAME=180oAMD^+AME^=180o
⇒ˆAMD=ˆAME=180o2=90o⇒AMD^=AME^=180o2=90o
⇒AM⊥DE⇒AM⊥DE (đpcm)
c) Xét ΔΔ vuông ABHABH và ΔΔ vuông ACKACK có:
AB=ACAB=AC (gt)
ˆBAH=ˆCAKBAH^=CAK^ (do ΔABD=ΔACEΔABD=ΔACE)
⇒ΔABH=ΔACK⇒ΔABH=ΔACK (ch-gn)
⇒BH=CK⇒BH=CK (hai cạnh tương ứng) (đpcm)
CHÚC BẠN HỌC GIỎI NHÉ THEO DÕI CHÉO NHA?
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A có AM là đường cao
nên AM là phân giác của góc DAE
a
Theo đề có \(\widehat{ABC}=\widehat{ACB}\) (tam giác ABC cân tại A)
Lại có: \(\widehat{ABD}+\widehat{ABC}=\widehat{ACE}+\widehat{ACB}\left(=180^o\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét tam giác ABD và tam giác ACE có:
`AB=AC`
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
`DB=CE`
=> ΔABD = ΔACE
=> `AD=AE` (2 cạnh tương ứng)
=> Tam giác ADE cân tại A
b
Ta có:
`BM=CM`
`DB=CE`
\(\Rightarrow\)`DM=EM`
\(\Rightarrow\)AM là đường trung tuyến của ΔADE
\(\Rightarrow\)AM là tia phân giác của \(\widehat{DAE}\)