K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

Ta có : \(\frac{HA'}{AA'}=\frac{S_{HBC}}{S_{ABC}};\frac{HB'}{AB'}=\frac{S_{HAC}}{S_{ABC}};\frac{HC'}{AC'}=\frac{S_{HAB}}{S_{ABC}}\)

nên \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=\frac{S_{HBC}+S_{HAB}+S_{HAC}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

Vậy \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)

7 tháng 4 2019

Ban vao trang Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi

26 tháng 2 2018

a, Có : HA'/AA' = HA'.BC/AA'.BC = S AHB + S AHC / S ABC

Tương tự : HB'/BB' = S BHA + S BHC / S ABC ; HC'/CC' = S CHA + S CHB / S ABC

=> HA'/AA' + HB'/BB' + HC'/CC' = 2.(S AHC + S AHB + S BHC)/S ABC = 2

Tk mk nha

7 tháng 4 2019

a)

'

AA

'

HA

BC

'.

AA

.

2

1

BC

'.

HA

.

2

1

S

S

ABC

HBC

; (0,5đi

m)

Tương t

:

'

CC

'

HC

S

S

ABC

HAB

;

'

BB

'

HB

S

S

ABC

HAC

(0,5đi

m)

1

S

S

S

S

S

S

'

CC

'

HC

'

BB

'

HB

'

AA

'

HA

ABC

HAC

ABC

HAB

ABC

HBC

(0,5đi

m)

b) Áp d

ng tính ch

t phân giác vào các tam giác ABC,

ABI, AIC:

AI

IC

MA

CM

;

BI

AI

NB

AN

;

AC

AB

IC

BI

(0,5đi

m )

AM

.

IC

.

BN

CM

.

AN

.

BI

1

BI

IC

.

AC

AB

AI

IC

.

BI

AI

.

AC

AB

MA

CM

.

NB

AN

.

IC

BI

(0,5đi

m )

13 tháng 1 2018

Đa giác. Diện tích của đa giácĐa giác. Diện tích của đa giác

13 tháng 1 2018

Ta có:

\(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}\)

\(\dfrac{HA'.BC}{AA'.BC}+\dfrac{HB'.AC}{BB'.AC}+\dfrac{HC'.AB}{CC'.AB}\)

\(\dfrac{S_{BHC}}{S_{ABC}}+\dfrac{S_{AHC}}{S_{ABC}}+\dfrac{S_{AHB}}{S_{ABC}}=\dfrac{S_{ABC}}{S_{ABC}}=1\)

2 tháng 8 2019

A B C E D F H I G

a) Qua H kẻ HG//AB  cắt AC tại G; kẻ HI//AC cắt AB tại I như hình vẽ.

=> HI vuông BH ; CH vuông HG

và AIHG là hình bình hành

Xét tam giác BHI vuông tại H => BH<BI ( mối quan hệ cạnh góc vuông và cạnh huyền) (1)

Xét tam giác CHG vuông tại H => CH<CG  

=> CH+BH + AH< BI+CG +AH 

Ta lại có AH <AI+IH (  bất đẳng thức trong tam giác AIH)

mà IH=AG ( AIHG là hình bình hành theo cách vẽ )

=> AH < AI+AG 

Vậy CH+BH+AH<BI+CG+AI+AG=AB+AC

b) Chứng minh AB+AC+BC>3/2 (HA+HB+HC) 

Chứng minh tương tự như câu a.

Ta có: \(AB+AC>HA+HB+HC\)

\(BC+AC>HA+HB+HC\)

\(AB+BC>HA+HB+HC\)

Cộng theo vế ta có:

\(2AB+2AC+2BC>3HA+3HB+3HC\)

=> \(2\left(AB+AC+BC\right)>3\left(HA+HB+HC\right)\)

=> \(AB+AC+BC>\frac{3}{2}\left(HA+HB+HC\right)\)