K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

ủa,\(2\left(xy-yz+zx\right)\) mới đúng chứ nhể ?

\(x^2=\left(y+z\right)^2=y^2+2yz+z^2\Rightarrow2yz=x^2-y^2-z^2\)

\(x=y+z\Rightarrow x-y=z\Rightarrow x^2-2xy+y^2=z^2\Rightarrow x^2+y^2-z^2=2xy\)

\(x=y+z\Rightarrow y=x-z\Rightarrow y^2=x^2-2xz+z^2\Rightarrow x^2+z^2-y^2=2xz\)

Khi đó:

\(2xy-2yz+2zx=x^2+y^2-z^2-x^2+y^2+z^2+x^2+z^2-y^2=x^2+y^2+z^2\) 

=> đpcm

2 tháng 11 2019

Thêm một cách nhé!

\(x=y+z\)

=> \(y+z-x=0\)

=> \(\left(y+z-x\right)^2=0\)

=> \(\left(y+z\right)^2-2x\left(y+z\right)+x^2=0\)

=> \(x^2+y^2+z^2-2xy-2xz+2yz=0\)

=> \(2\left(xy-yz+xz\right)=x^2+y^2+z^2\)

14 tháng 5 2018

Từ dữ kiện đề bài => x + y + z = xyz

Ta có : 

\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)

                                                                                                                   \(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)

Tương tự với hai hạng tử còn lại , suy ra 

\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)

Vậy Max = 3/2 <=> x = y = z 

Nguồn : Đinh Đức Hùng 

15 tháng 1 2018

Từ \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

\(\Rightarrow\)\(x+y+z=xyz\)

Ta có : \(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

Tương tự : \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(z+x\right)}\)\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(y+z\right)\left(y+x\right)}\)

Nên \(Q=\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{z}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)

         \(Q=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)

Áp dụng BĐT \(\sqrt{A.B}\le\frac{A+B}{2}\left(A,B>0\right)\)

Dấu "=" xảy ra khi A = B :

Ta được :

\(Q\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)

Vậy GTLN của \(Q=\frac{3}{2}\)khi \(x=y=z=\sqrt{3}\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2019

Lời giải:

Áp dụng hằng đẳng thức dạng:

\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:

\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)

\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)

\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)

\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)

\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

Áp dụng hằng đẳng thức dạng:

\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:

\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)

\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)

\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)

\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)

\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

Ta có đpcm.

5 tháng 5 2019

\(xy+yz+zx=4xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)

Ta có \(M=\frac{1}{4\left(x+y\right)}+\frac{1}{4\left(y+z\right)}+\frac{1}{4\left(z+x\right)}\)

               \(=\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)\)

                                                                                     \(=\frac{1}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}.4=\frac{1}{2}\)

Dấu "=" tại x = y = z = 3/4