Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ dữ kiện đề bài => x + y + z = xyz
Ta có :
\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)
\(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)
Tương tự với hai hạng tử còn lại , suy ra
\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Vậy Max = 3/2 <=> x = y = z
Nguồn : Đinh Đức Hùng
Từ \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
\(\Rightarrow\)\(x+y+z=xyz\)
Ta có : \(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)
Tương tự : \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(z+x\right)}\); \(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(y+z\right)\left(y+x\right)}\)
Nên \(Q=\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{z}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
\(Q=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)
Áp dụng BĐT \(\sqrt{A.B}\le\frac{A+B}{2}\left(A,B>0\right)\)
Dấu "=" xảy ra khi A = B :
Ta được :
\(Q\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Vậy GTLN của \(Q=\frac{3}{2}\)khi \(x=y=z=\sqrt{3}\)
Lời giải:
Áp dụng hằng đẳng thức dạng:
\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:
\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)
\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)
\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)
\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Ta có đpcm.
Lời giải:
Áp dụng hằng đẳng thức dạng:
\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:
\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)
\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)
\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)
\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Ta có đpcm.
\(xy+yz+zx=4xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
Ta có \(M=\frac{1}{4\left(x+y\right)}+\frac{1}{4\left(y+z\right)}+\frac{1}{4\left(z+x\right)}\)
\(=\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)\)
\(=\frac{1}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}.4=\frac{1}{2}\)
Dấu "=" tại x = y = z = 3/4
ủa,\(2\left(xy-yz+zx\right)\) mới đúng chứ nhể ?
\(x^2=\left(y+z\right)^2=y^2+2yz+z^2\Rightarrow2yz=x^2-y^2-z^2\)
\(x=y+z\Rightarrow x-y=z\Rightarrow x^2-2xy+y^2=z^2\Rightarrow x^2+y^2-z^2=2xy\)
\(x=y+z\Rightarrow y=x-z\Rightarrow y^2=x^2-2xz+z^2\Rightarrow x^2+z^2-y^2=2xz\)
Khi đó:
\(2xy-2yz+2zx=x^2+y^2-z^2-x^2+y^2+z^2+x^2+z^2-y^2=x^2+y^2+z^2\)
=> đpcm
Thêm một cách nhé!
\(x=y+z\)
=> \(y+z-x=0\)
=> \(\left(y+z-x\right)^2=0\)
=> \(\left(y+z\right)^2-2x\left(y+z\right)+x^2=0\)
=> \(x^2+y^2+z^2-2xy-2xz+2yz=0\)
=> \(2\left(xy-yz+xz\right)=x^2+y^2+z^2\)