K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

\(\frac{2y+3z+5}{1+x}+1+\frac{3z+x+5}{1+2y}+1+\frac{x+2y+5}{1+3z}+1\ge\frac{51}{7}+3=\frac{72}{7}\left(1\right)\)

Vậy ta cần chứng minh Bđt (1) , ta có:

\(VT_{\left(1\right)}=\frac{2y+3z+6+x}{1+x}+\frac{3z+x+2y+6}{1+2y}+\frac{x+2y+3z+6}{1+3z}\)

\(=\left(3z+x+2y+6\right)\left(\frac{1}{1+x}+\frac{1}{1+2y}+\frac{1}{1+3z}\right)\)

Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:

\(\left(3z+x+2y+6\right)\left(\frac{1}{1+x}+\frac{1}{1+2y}+\frac{1}{3z}\right)\)

\(\ge\left(3z+x+2y+6\right)\left(\frac{9}{3+x+2y+3z}\right)\)

\(=\left(18+6\right)\cdot\frac{9}{18+3}=24\cdot\frac{3}{7}=\frac{72}{7}\)

Vậy Bđt (1) đúng =>Đpcm

3 tháng 6 2019

Đặt: \(\left\{{}\begin{matrix}x=a\\2y=b\\3z=c\end{matrix}\right.\Rightarrow a+b+c=18\)

Có: BDT

\(\Leftrightarrow\sum_{cyc}\left(\frac{b+c+5}{a+1}\right)\ge\frac{51}{7}\)

\(\Leftrightarrow\sum_{cyc}\left(\frac{a+b+c-a+5}{a+1}\right)\ge\frac{51}{7}\)(1)

Đặt tiếp tục: \(\left\{{}\begin{matrix}m=a+1\\n=b+1\\p=c+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=m-1\\b=n-1\\c=p-1\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sum_{cyc}\left(\frac{24-m}{m}\right)\ge\frac{51}{7}\)

\(\Leftrightarrow\sum_{cyc}\left(\frac{24}{m}-1\right)\ge\frac{51}{7}\)

\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{72}{7}\)

\(\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge\frac{3}{7}\)

\(\Leftrightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge21\cdot\frac{3}{7}=9\)

\(\left(\frac{m}{n}-2+\frac{n}{m}\right)+\left(\frac{p}{m}-2+\frac{m}{p}\right)+\left(\frac{n}{p}-2+\frac{p}{n}\right)\ge0\)

\(\Leftrightarrow\frac{\left(m-n\right)^2}{mn}+\frac{\left(p-m\right)^2}{pm}+\frac{\left(n-p\right)^2}{pn}\ge0\)(đúng)

4 tháng 6 2019

Đặt: \(\left\{{}\begin{matrix}x=a\\2y=b\\3z=c\end{matrix}\right.\)

BĐT

\(\Leftrightarrow\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+b+5}{c+1}\ge\frac{51}{7}\)

\(\Leftrightarrow\frac{a+b+c-a+5}{a+1}+\frac{a+c+b-b+5}{b+1}+\frac{a+b+c-c+5}{c+1}\ge\frac{51}{7}\)

\(\Leftrightarrow\frac{24-\left(a+1\right)}{a+1}+\frac{24-\left(b+1\right)}{b+1}+\frac{24-\left(c+1\right)}{c+1}\ge\frac{51}{7}\)(1)

Đặt tiếp: \(\left\{{}\begin{matrix}a+1=m\\b+1=n\\c+1=p\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=m-1\\b=n-1\\c=p-1\end{matrix}\right.\)

(1)\(\Leftrightarrow\frac{24-m}{m}+\frac{24-n}{n}+\frac{24-p}{p}\ge\frac{51}{7}\)

\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)-3\ge\frac{51}{7}\)

\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{72}{7}\)

\(\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge\frac{3}{7}\)

\(\Leftrightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{3}{7}\left(m+n+p\right)\)( do m+n+p>0)

\(\Leftrightarrow3+\frac{m}{n}+\frac{n}{m}+\frac{p}{n}+\frac{n}{p}+\frac{m}{p}+\frac{p}{m}\ge\frac{3}{7}\left[\left(a+b+c\right)+3\right]\)

\(\Leftrightarrow\frac{m}{n}+\frac{n}{m}+\frac{p}{n}+\frac{n}{p}+\frac{p}{m}+\frac{m}{p}-6\ge0\)

Tới đây chắc bn làm đc rồi

18 tháng 9 2016

Đặt \(\hept{\begin{cases}a=x\\b=2y\\c=3z\end{cases}}\) => a + b + c = 18

\(P=\frac{2y+3z+5}{1+x}+\frac{3z+x+5}{1+2y}+\frac{x+2y+5}{1+3z}=\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+b+5}{c+1}\)

Lại đặt \(\hept{\begin{cases}m=a+1\\n=b+1\\p=c+1\end{cases}}\Rightarrow\hept{\begin{cases}a=m-1\\b=n-1\\c=p-1\end{cases}}\) 

Ta có : \(\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+c+5}{c+1}=\frac{24-m}{m}+\frac{24-n}{n}+\frac{24-p}{p}\)

\(=24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)-3\ge\frac{24.9}{m+n+p}-3=\frac{24.9}{\left(a+1\right)+\left(b+1\right)+\left(b+1\right)}-3\)

                                                       \(=\frac{24.9}{18+3}-3=\frac{51}{7}\)

21 tháng 3 2017

\(VT+3=\left(x+2y+3z+6\right)\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)\)

= \(24\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)\)

Áp dụng BĐT cauchy-schwarz:

\(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\ge\dfrac{9}{3+x+2y+3z}=\dfrac{9}{21}\)

\(\Rightarrow VT\ge\dfrac{24.9}{21}-3=\dfrac{51}{7}\)

dấu = xảy ra khi x=2y=3z=6 hay x=6,y=3,z=2

21 tháng 3 2017

cộng 3 vào rồi b-c-s

26 tháng 10 2016

Ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\ge\frac{9}{2\left(x+y+z\right)}\)\(\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có: \(\frac{1}{2x+3y+3z}=\frac{\left(\frac{3}{4}+\frac{1}{4}\right)^2}{2\left(x+y+z\right)+y+z}\le\frac{9}{32\left(x+y+z\right)}+\frac{1}{16\left(y+z\right)}\)

Do đó:

\(\frac{1}{2x+3y+3z}+\frac{1}{2y+3x+3z}+\frac{1}{2z+3x+3y}\)

\(\le\frac{9}{32\left(x+y+z\right)}\cdot3+\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

\(\le\frac{9}{32\cdot\frac{3}{4}}+\frac{1}{16}\cdot6=\frac{3}{2}\)(Đpcm)

1 tháng 2 2018

Tại sao \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\ge\frac{9}{2\left(x+y+z\right)}\)

26 tháng 10 2016

Đặt \(x=a;2y=b;3z=c\Rightarrow a+b+c=3\) 

\(T=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

Áp dụng Bđt Cô si ngược dấu ta có:

\(T=\text{∑}a-\frac{a^2b}{1+b^2}\ge\text{∑}a-\frac{a^2b}{2b}=\text{∑}a-\frac{ab}{2}\)

\(=a+b+c-\frac{ab+bc+ca}{2}\ge a+b+c-\frac{\left(ab+bc+ca\right)^2}{6}\)\(=3-\frac{3^2}{6}=\frac{3}{2}\)

Dấu = khi \(a=b=c=1\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=\frac{1}{3}\end{cases}}\)

9 tháng 1 2019

Ta có bđt \(\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\)

\(\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)\)

Áp dụng nhiều lần bđt trên ta được

\(\(\frac{1}{3x+3y+2z}=\frac{1}{\left(2x+y+z\right)+\left(x+2y+z\right)}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}\right)\)\)

\(\(\le\frac{1}{4}\left(\frac{1}{\left(x+y\right)+\left(x+z\right)}+\frac{1}{\left(x+y\right)+\left(y+z\right)}\right)\)\)

\(\(\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\right]\)\)

\(\(\le\frac{1}{16}\left(\frac{2}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\right)\)\)

C/m tương tự cho các bđt còn lại

\(\(\frac{1}{3x+2y+3z}\le\frac{1}{16}\left(\frac{2}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\)\)

\(\(\frac{1}{2x+3y+3z}\le\frac{1}{16}\left(\frac{2}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\right)\)\)

Cộng vế theo vế được

\(\(P\le\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)=\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{1}{4}.6=\frac{3}{2}\)\)

Dấu "=" xảy ra

\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{1}{2x}+\frac{1}{2x}+\frac{1}{2x=6}\end{cases}}\)\)

\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{3}{2x}=6\end{cases}}\)\)

\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x=\frac{1}{4}\end{cases}}\)\)

\(\(\Leftrightarrow x=y=z=\frac{1}{4}\)\)

Vậy ..........

10 tháng 1 2019

cách khác :)) 

\(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\)\(\Leftrightarrow\)\(x+y+z\le3\)

\(P=\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\)

\(P=\frac{1}{3\left(x+y+z\right)-z}+\frac{1}{3\left(x+y+z\right)-y}+\frac{1}{3\left(x+y+z\right)-x}\)

\(\ge\frac{9}{9\left(x+y+z\right)-\left(x+y+z\right)}=\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.3}=\frac{3}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)

1 tháng 2 2018

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{\left(1+1+1+1\right)^2}{a+b+c+d}=\frac{16}{a+b+c+d}\)ta có :

\(\frac{16}{3x+3y+2z}\le\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\)

\(\frac{16}{3x+2y+3z}\le\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\)

\(\frac{16}{2x+3y+3z}\le\frac{1}{y+z}+\frac{1}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\)

Cộng theo vế 3 đẳng thức trên ta được :

\(16.\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)

\(\le4.\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=4.6=24\)

\(\Rightarrow\)\(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)

1 tháng 2 2018

Câu hỏi của NGUYỄN DOÃN ANH THÁI - Toán lớp 9 - Học toán với OnlineMath