\(x,y,z\ge0;x+5y=21;2x+3z=51\)tim GTLN của \(A=\left(x+y+z\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

Ta có: x+5y=21 và 2x+3z=51

=> x+5y+2x+3z=21+51

<=> 3x+3y+3z+2y=72

<=> 3(x+y+z)=72-2y

=> \(x+y+z=\frac{72-2y}{3}=24-\frac{2y}{3}\)

=> \(A=\left(x+y+z\right)^2=\left(24-\frac{2y}{3}\right)^2\)

Do \(y\ge0\)=> Để A đạt GTLN thì y đạt GTNN

Mà GTNN của y là y=0 => \(A_{max}=\left(24-\frac{2y}{3}\right)^2=\left(24-\frac{2}{3}.0\right)^2=24^2=576\)

Đáp số: Amax=576

13 tháng 6 2017

Ta có: \(\left(x+z\right)\left(y+z\right)=1\)

\(\Rightarrow\left(x+z\right)^2\left(y+z\right)^2=1\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x+z\right)^2\left(y+z\right)^2}{\left(y+z\right)^2}+\dfrac{\left(x+z\right)^2\left(y+z\right)^2}{\left(z+x\right)^2}\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x+z\right)^2+\left(y+z\right)^2\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x+z\right)^2-2\left(x+z\right)\left(y+z\right)+\left(y+z\right)^2+2\) (Vì: (x+z)(y+z)=1 =>2(x+z)(y+z)=2 )

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x+z-y-z\right)^2+2\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2+2\)

Áp dụng bất đẳng thức Cauchy, ta có :

\(\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2\ge2\sqrt{\dfrac{1}{\left(x-y\right)^2}\cdot\left(x-y\right)^2}=2\cdot1=2\)

\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2+2\ge2+2=4\)

Vậy \(MinP=4\) khi \(x-y=1\); \(y+z=\dfrac{\sqrt{5}-1}{2}\); \(x+z=\dfrac{2}{\sqrt{5}-1}\)

10 tháng 6 2017

a )

Sử dụng Cô-si , ta có :

\(x+y\ge2\sqrt{xy}\) (1)

\(\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\) (2)

Nhân cả vế (1) vế (2) lại ta có :

\(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}=4\)

\(\LeftrightarrowĐPCM.\)

10 tháng 6 2017

Câu b trên mạng đầy :v

1 tháng 4 2020

Bài 2 bạn tham khảo cách làm của cô Linh Chi tại đây nhé :

Câu hỏi của nguyen trung nghia - Toán lớp 8 - Học toán với OnlineMath

Học tốt và cá tháng tư đừng để bị troll nha !!!!!!!!!!!

1 tháng 4 2020

B1:

\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=2+\frac{x}{y}+\frac{y}{x}\)

Nhờ dự đoán được điểm rơi,ta chứng minh bất đẳng thức sau luôn đúng:\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)

Thật vậy !!!

\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)

\(\Leftrightarrow\left(\frac{x}{y}-\frac{1}{2}\right)+\left(\frac{y}{x}-2\right)\le0\)

\(\Leftrightarrow\frac{2x-y}{2y}+\frac{y-2x}{x}\le0\)

\(\Leftrightarrow\frac{2x^2-xy+2y^2-4xy}{2xy}\le0\)

\(\Leftrightarrow2x^2-5xy+2y^2\le0\)

\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)\le0\) ( đúng )

Dấu "=" xảy ra tại \(x=1;y=2\)

Vậy \(M_{max}=\frac{9}{2}\Leftrightarrow x=1;y=2\)

a: x-y-z=0

=>x=y+z; y=x-z; z=x-y

\(K=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{z+y}{z}=\dfrac{y\cdot\left(-z\right)\cdot x}{xyz}=-1\)

b: Tham khảo:

undefined

14 tháng 3 2018

a) A=(x+z)(y+t)

= xy+xt+zy+zt

Áp dụng bất đẳng thức cô si cho 2 số ta có

x2+y2 ≥ 2\(\sqrt{x^2y^2}\)

⇔x2+y2 ≥ 2xy

TT ta có

x2+t2 ≥ 2xt

y2+z2 ≥ 2yz

z2+t2 ≥ 2zt

cộng vế vs vế ta có

=> x2+y2+x2+t2+y2+z2+t2 ≥ 2xy+2xt+2yz+2zt

⇔ 2(x2+y2+z2+t2) ≥ 2(xy+xt+yz+zt)

⇔ 2 .1 ≥2 A

⇔ 1≥ A

⇔ A ≤ 1

=> Max A =1 dấu "=" xảy ra khi x=y=t=z= \(\pm\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
14 tháng 3 2018

Câu b)

Đây là bài toán quen thuộc của dạng toán xác định điểm rơi trong BĐT Cô-si:

Áp dụng BĐT Cô-si:

\(\frac{2}{3}x^2+\frac{2}{3}y^2\geq 2\sqrt{\frac{2}{3}x^2.\frac{2}{3}y^2}=\frac{4}{3}|xy|\geq \frac{4}{3}xy\)

\(\frac{1}{3}x^2+\frac{4}{3}t^2\geq 2\sqrt{\frac{1}{3}x^2.\frac{4}{3}t^2}=\frac{4}{3}|xt|\geq \frac{4}{3}xt\)

\(\frac{1}{3}y^2+\frac{4}{3}z^2\geq 2\sqrt{\frac{1}{3}y^2.\frac{4}{3}z^2}=\frac{4}{3}|yz|\geq \frac{4}{3}yz\)

\(\frac{2}{3}z^2+\frac{2}{3}t^2\geq 2\sqrt{\frac{2}{3}z^2.\frac{2}{3}t^2}=\frac{4}{3}|zt|\geq \frac{4}{3}zt\)

Cộng theo vế các BĐT thu được và rút gọn:

\(\Rightarrow x^2+y^2+2z^2+2t^2\geq \frac{4}{3}(xy+xt+yz+zt)\)

\(\Leftrightarrow \frac{4}{3}(xy+xt+yz+zt)\leq 1\)

\(\Leftrightarrow B=(x+z)(y+t)\leq \frac{3}{4}\) hay $B_{\max}=\frac{3}{4}$

Dấu bằng xảy ra khi \(x=y=2z=2t\Leftrightarrow (x,y,z,t)=\left(\frac{1}{\pm \sqrt{3}}; \frac{1}{\pm\sqrt{3}}; \frac{1}{\pm 2\sqrt{3}}; \frac{1}{\pm 2\sqrt{3}}\right)\)

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Không đủ dữ liệu/ cơ sở để tính A bạn nhé. Bạn xem lại đề.

6 tháng 10 2016

Tớ giải cho cậu bài này trên lớp rồi mà??????

~]

~~~~~~~~~~

~~~~~~~~~

olm-logo.png

19 tháng 6 2019

a) Ta có: \(x=a^2-bc\Rightarrow ax=a^3-abc;\) \(y=b^2-ac\Rightarrow b^3-abc;\) \(z=c^2-ab\Rightarrow cz=c^3-abc\)

\(\Rightarrow ax+by+cz=a^3+b^3+c^3-3abc\)

Ta có: \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2-bc+b^2-ac+c^2-ab\right)=\left(a+b+c\right)\left(x+y+z\right)\)

Vậy: \(\left(x+y+z\right)\left(a+b+c\right)=ax+by+cz\left(đpcm\right)\)

19 tháng 6 2019

#)Giải :

a) Ta có : 

\(x=a^2-bc\Rightarrow ax=a^3-abc\)

\(y=b^2-ac\Rightarrow by=b^3-abc\)

\(z=c^2-ab\Rightarrow cz=c^3-abc\)

\(\Rightarrow ax+by+cz=a^3+b^3+c^3-3abc\)

Ta có : \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2-bc+b^2-ac+c^2-ab\right)=\left(a+b+c\right)\left(x+y+z\right)\)

\(\Rightarrow\left(x+y+z\right)\left(a+b+c\right)=ax+by+cz\left(đpcm\right)\)