Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\frac{\left(x^4+x^2y^2\right)^2+\left(y^4+x^2y^2\right)^2+x^4y^4}{\left(x^2+y^2\right)^2}}}\)
\(=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\frac{\left(x^4+x^2y^2\right)^2+2x^4y^4+2x^2y^6+y^8}{\left(x^2+y^2\right)^2}}}\)
\(=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\frac{\left(x^4+x^2y^2\right)^2+2\left(x^4+x^2y^2\right)y^4+y^8}{\left(x^2+y^2\right)^2}}}\)
\(=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\frac{\left(x^4+x^2y^2+y^4\right)^2}{\left(x^2+y^2\right)^2}}}\)
\(=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\frac{x^4+x^2y^2+y^4}{x^2+y^2}}\)
\(=\sqrt{\frac{x^2y^2}{\left(x+y\right)^2}+\frac{x^4+2x^2y^2+y^4}{x^2+y^2}}=\sqrt{\frac{x^2y^2}{\left(x+y\right)^2}+\frac{\left(x^2+y^2\right)^2}{x^2+y^2}}\)
\(=\sqrt{\frac{x^2y^2}{\left(x+y\right)^2}+x^2+y^2}=\sqrt{\frac{\left(x^2+xy\right)^2+\left(y^2+xy\right)^2+x^2y^2}{\left(x+y\right)^2}}\)
\(=\sqrt{\frac{\left(x^2+xy\right)^2+2x^2y^2+2xy^3+y^4}{\left(x+y\right)^2}}=\sqrt{\frac{\left(x^2+xy\right)^2+2\left(x^2+xy\right)y^2+y^4}{\left(x+y\right)^2}}\)
\(=\sqrt{\frac{\left(x^2+xy+y^2\right)^2}{\left(x+y\right)^2}}=\frac{x^2+xy+y^2}{x+y}\)
\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)
\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)
\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)
\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)
\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé
\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)
1, với x > 0 ; x khác 1 ; 4
a, \(P=\left(\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{x-1}\right)\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}:\dfrac{x-4}{x-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
b, Ta có P > 0 => \(\sqrt{x}-1>0\Leftrightarrow x>1\)
Kết hợp đk vậy x > 1 ; x khác 4
a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))
b \(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))
a) \(\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\left(\sqrt{x}-\sqrt{y}\right)}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}-x+2\sqrt{xy}-y\)
\(=3\sqrt{xy}\)
b) \(\frac{x-y}{\sqrt{y}-1}.\sqrt{\frac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}=\frac{x-y}{\sqrt{y}-1}.\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-y\right)\left(\sqrt{y}-1\right)}{\left(x-1\right)^2}\)
a) \(=\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=x+\sqrt{xy}+y-x+2\sqrt{xy}-y=3\sqrt{xy}\)
\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)
Ta xét các trường hợp sau:
Trường hợp 1:
\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:
\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)
\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)
Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)
Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:
\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)
Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)
+ Nếu như:
\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)
+ Nếu như:
\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)
Trường hợp 2:
\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:
\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)
Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)
Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v
3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)
\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)
Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)
\(\Leftrightarrow2b=1-\frac{1}{a}\)
Thay vào (1) ta được :
\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)
Giải pt được \(a=1\)
Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)
Ta có hệ :
\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)
Vậy...
Ta có: \(x^4+y^4+\frac{x^4y^4}{\left(x^2+y^2\right)^2}\)
\(=\left(x^4+2x^2y^2+y^4\right)-2x^2y^2+\frac{x^4y^4}{\left(x^2+y^2\right)}\)
\(=\left(x^2+y^2\right)^2-2x^2y^2+\left(\frac{x^2y^2}{x^2+y^2}\right)^2\)
\(=\left(x^2+y^2-\frac{x^2y^2}{x^2+y^2}\right)^2\)
Thay vào ta tính được:
\(P=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\left(x^2+y^2-\frac{x^2y^2}{x^2+y^2}\right)^2}}\)
Mà \(x^2+y^2-\frac{x^2y^2}{x^2+y^2}=\frac{\left(x^2+y^2\right)^2-x^2y^2}{x^2+y^2}=\frac{x^4+x^2y^2+y^4}{x^2+y^2}>0\left(\forall x,y\right)\)
Khi đó:
\(P=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+x^2+y^2-\frac{x^2y^2}{x^2+y^2}}\)
\(P=\sqrt{x^2+y^2+\frac{x^2y^2}{\left(x+y\right)^2}}\)
\(P=\sqrt{\left(x^2+2xy+y^2\right)-2xy+\frac{x^2y^2}{\left(x+y\right)^2}}\)
\(P=\sqrt{\left(x+y\right)^2-2xy+\left(\frac{xy}{x+y}\right)^2}\)
\(P=\sqrt{\left(x+y-\frac{xy}{x+y}\right)^2}\)
\(P=\left|x+y-\frac{xy}{x+y}\right|=\left|\frac{x^2+xy+y^2}{x+y}\right|=\frac{x^2+xy+y^2}{x+y}\)
Vậy \(P=\frac{x^2+xy+y^2}{x+y}\)