\(\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2016

theo vi-ét : x1 + x2=m+3

                 x1.x2= m+2

 1X1 +1X2 =x1+x2

(x2+x1)/(x1.x2)=x1+x2

(m+3)/(m+2)=m+3

<=> (m+2).(m+3)=m+3

nhân chuyển vế thành m^2 + 4m+3

giải ra m=-1

          m=-3

:)))

       

NV
14 tháng 5 2020

\(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)\)

\(=5m^2-6m+9=5\left(m-\frac{3}{5}\right)^2+\frac{36}{5}>0;\forall m\)

Mặt khác \(-m^2+m-2\ne0;\forall m\Rightarrow\) biểu thức đề bài luôn xác định

\(B=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^3-6\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)\)

Xét \(A=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(m-1\right)^2-2\left(-m^2+m-2\right)}{-m^2+m-2}=\frac{3m^2-4m+5}{-m^2+m-2}\)

\(\Rightarrow-Am^2+Am-2A=3m^2-4m+5\)

\(\Leftrightarrow\left(A+3\right)m^2-\left(A+4\right)m+2A+5=0\)

\(\Delta=\left(A+4\right)^2-4\left(A+3\right)\left(2A+5\right)\ge0\)

\(\Leftrightarrow7A^2+36A+44\le0\Rightarrow-\frac{22}{7}\le A\le-2\)

Thay vào B:

\(B=A^3-6A\) với \(-\frac{22}{7}\le A\le-2\)

\(B=A^2\left(A+2\right)-2\left(A+1\right)\left(A+2\right)+4\)

Do \(A\le-2\Rightarrow\left\{{}\begin{matrix}A+2\le0\\\left(A+1\right)\left(A+2\right)\ge0\end{matrix}\right.\) \(\Rightarrow B\le4\)

\(\Rightarrow B_{max}=4\) khi \(A=-2\) hay \(m=1\)

20 tháng 4 2020

Bài giải 

Ta có : \(\hept{\begin{cases}x_1.x_2=m^2+3\\x_1+x_2=2\left(m+1\right)\end{cases}}\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{8}{x_1.x_2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{8}{x_1.x_2}\)

<=> ( x1 + x2 ) 2 -2x1x2 = 8

<=>4(m+1)2 -2(m2+ 3 ) = 8 <=> 2m2 + 8m - 10=0

<=> \(\orbr{\begin{cases}m=1\\m=-5\left(L\right)\end{cases}}\)

\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+3\right)\)

= 4(m + 1)2 - 4m2 - 12

= 4m2 + 8m + 4 - 4m2 - 12 = 8m - 8

Để pt có 2 nghiệm thì \(\Delta\ge0\) <=> 8m - 8 \(\ge\)0

<=> 8(m - 1) \(\ge\) 0

<=> m -1 \(\ge\)0

<=> m \(\ge\) 1

Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)=2m+2\\x_1.x_2=m^2+3\end{cases}}\)

Theo đề ta có: \(\frac{x1}{x2}+\frac{x2}{x1}=\frac{8}{x1.x2}\)

ĐK: x1, x2 \(\ne\)0 => \(\hept{\begin{cases}x1+x2\ne0\\x1.x2\ne0\end{cases}}hay\hept{\begin{cases}2m+2\ne0\\m^2+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ne-1\\m^2\ne-3\end{cases}}\Leftrightarrow m\ne-1\) 

<=> \(\frac{\left(x_1\right)^2+\left(x_2\right)^2}{x1.x2}=\frac{8}{x1.x2}\)

=> \(\left(x_1\right)^2+\left(x_2\right)^2=8\)

<=> \(\left(x_1+x_2\right)^2-2.x_1.x_2=8\)

Hay (2m + 2)2 - 2(m2 + 3) = 8

<=> 4m2 + 8m + 4 - 2m2 - 6 = 8

<=> 2m2 + 8m - 10 = 0

a + b + c = 2 + 8 + (-10) = 0

=> m = 1 (tmđk) và m = \(\frac{c}{a}=-5\)(ktmđk)

Vậy m = 1 thì ....

NV
16 tháng 4 2020

Từ hệ "kết hợp Viet" ấy lần lượt cộng vế với vế và trừ vế với vế là ra thôi mà

Anh Mai

NV
16 tháng 4 2020

Để pt có 2 nghiệm khác 0 \(\Leftrightarrow m\ne0\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-3m^2\end{matrix}\right.\)

\(\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{8}{3}\)

\(\Leftrightarrow x_1^2-x_2^2=\frac{8}{3}x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=\frac{8}{3}x_1x_2\)

\(\Leftrightarrow x_1-x_2=\frac{4}{3}\left(-3m^2\right)=-4m^2\)

Kết hợp Viet ta được

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1-x_2=-4m^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-2m^2+1\\x_2=2m^2+1\end{matrix}\right.\)

\(\Rightarrow\left(1-2m^2\right)\left(1+2m^2\right)=-3m^2\)

\(\Leftrightarrow1-4m^4=-3m^2\)

\(\Leftrightarrow4m^4-3m^2-1=0\Rightarrow\left[{}\begin{matrix}m^2=1\\m^2=-\frac{1}{4}\left(l\right)\end{matrix}\right.\) \(\Rightarrow m=\pm1\)

7 tháng 7 2019

Nếu đề bài là

Tính P=\(\frac{x_1^2+x_1-1}{x_1}\)-\(\frac{x_2^2+x_2-1}{x_2}\)

Thì lời giải như sau:

Theo định lý Viete, ta có:

x1.x2=-1

Khi đó P=\(\frac{x_1^2+x_1+x_1.x_2}{x_1}\)-\(\frac{x_2^2+x_2+x_1.x_2}{x_2}\)

Do x1 và x2 không thể bằng không nên ta chia tử mẫu của mỗi hạng tử cho x1,x2

Khi đó P=x1+x2+1-(x2+x1+1)=0

9 tháng 6 2019

Ta có \(\Delta^'=\left(m-1\right)^2-\left(m^2+1\right)=m^2-2m+1-m^2-1=-2m.\)

Để phương trình đã cho có 2 nghiệm \(x_1,x_2\)thì \(\Delta^'\ge0\Leftrightarrow-2m\ge0\Leftrightarrow m\le0\)

áp  dụng hệ thức Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2+1\end{cases}}\)

Dễ thấy \(x_1x_2=m^2+1\ge1\Rightarrow x_1,x_2\ne0\forall m\)

Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\)\(\Leftrightarrow\frac{x^2_1+x_2^2}{x_1x_2}=4\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}-2=4\Leftrightarrow\left(x_1+x_2\right)^2=6x_1x_2\)

\(\Leftrightarrow\left(2\left(m-1\right)\right)^2=6\left(m^2+1\right)\Leftrightarrow4m^2-8m+4=6m^2+6\)

\(\Leftrightarrow2m^2+8m+2=0\Leftrightarrow m^2+4m+4=3\Leftrightarrow\left(m+2\right)^2=3\)

\(\Leftrightarrow\orbr{\begin{cases}m+2=\sqrt{3}\\m+2=-\sqrt{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}m=\sqrt{3}-2\left(TMĐK\right)\\m=-\sqrt{3}-2\left(TMĐK\right)\end{cases}.}\)

Vậy..........

11 tháng 4 2020

Tự tìm delta nhé.

Áp dụng Viete: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m+2\end{matrix}\right.\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(2m-2\right)^2-2\left(m+2\right)}{m+2}=4\)

\(\Leftrightarrow4m^2-10m-4m-8=0\)

\(\Leftrightarrow4m^2-14m-8=0\)

\(\Leftrightarrow\left(m-4\right)\left(2m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=\frac{-1}{2}\end{matrix}\right.\)