\(x=\sqrt[3]{2-\sqrt{3}}+\frac{1}{\sqrt[3]{2-\sqrt{3}}}\)

Tìm P=(x3-...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 8 2020

5.

ĐKXĐ: \(-\frac{1}{2}\le x\le\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}-x+\frac{1}{2}+x+2\sqrt{\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)}=1\)

\(\Leftrightarrow\sqrt{\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)

6.

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x^2-1\right)\left(x^2+1\right)}\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}-\sqrt{x-1}-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\left(vn\right)\end{matrix}\right.\)

NV
8 tháng 8 2020

2.

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow2\left(x^2+2\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

\(\Leftrightarrow2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2a=b\\a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=\sqrt{x^2-x+1}\\\sqrt{x+1}=2\sqrt{x^2-x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+4=x^2-x+1\\x+1=4x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-3=0\\4x^2-5x+3=0\end{matrix}\right.\) \(\Leftrightarrow...\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Bài 6:

ĐK: $x\geq \frac{2}{3}$

Đặt $\sqrt{4x+1}=a; \sqrt{3x-2}=b(a,b\geq 0)$

PT trở thành:

$a-b=a^2-b^2$

$\Leftrightarrow (a-b)(a+b)-(a-b)=0$

$\Leftrightarrow (a-b)(a+b-1)=0$

Nếu $a-b=0\Leftrightarrow 4x+1=3x-2\Leftrightarrow x=-3$ (loại vì không thỏa ĐKXĐ)

Nếu $a+b-1=0$

$\Leftrightarrow b=1-a$

$\Leftrightarrow \sqrt{3x-2}=1-\sqrt{4x+1}$

$\Rightarrow 3x-2=4x+2-2\sqrt{4x+1}$

$\Leftrightarrow x+4=2\sqrt{4x+1}$

$\Rightarrow (x+4)^2=4(4x+1)$

$\Leftrightarrow x^2-8x+12=0\Leftrightarrow x=6$ hoặc $x=2$

Vậy.......

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Bài 5:

ĐK: $x\geq -2$

PT $\Leftrightarrow 3\sqrt{(x+2)(x^2-2x+4)}=2x^2-3x+10$

Đặt $\sqrt{x+2}=a; \sqrt{x^2-2x+4}=b(a,b\geq 0)$

Khi đó PT trở thành:
$3ab=2b^2+a^2$

$\Leftrightarrow a^2-3ab+2b^2=0$

$\Leftrightarrow a(a-b)-2b(a-b)=0$

$\Leftrightarrow (a-b)(a-2b)=0$
Nếu $a-b=0\Rightarrow a^2-b^2=0$

$\Leftrightarrow x+2-(x^2-2x+4)=0$

$\Leftrightarrow x^2-3x+2=0\Rightarrow x=1$ hoặc $x=2$ (thỏa mãn)

Nếu $a-2b=0\Rightarrow 4b^2-a^2=0$

$\Leftrightarrow 4(x^2-2x+4)-(x+2)=0$

$\Leftrightarrow 4x^2-9x+14=0$ (pt vô nghiệm)

Vậy.........

NV
29 tháng 11 2018

\(x=1+\sqrt[3]{5}+\sqrt[3]{25}\Rightarrow x-1=\sqrt[3]{5}+\sqrt[3]{25}\)

\(\Rightarrow\left(x-1\right)^3=5+25+3.\sqrt[3]{5.25}\left(\sqrt[3]{5}+\sqrt[3]{25}\right)=30+15\left(\sqrt[3]{5}+\sqrt[3]{25}\right)\)

\(\Rightarrow\left(x-1\right)^3=30+15\left(x-1\right)=15+15x\)

Ta có:

\(P=\left(x^3-3x^2+3x-1-15x-14\right)^{10}+2018\)

\(P=\left(\left(x-1\right)^3-15x-14\right)^{10}+2018=\left(15+15x-15x-14\right)^{10}+2018\)

\(\Rightarrow P=1^{10}+2018=1+2018=2019\)

22 tháng 8 2020

ĐẶT:    \(a=\sqrt[3]{\sqrt{2}-1}\)

=>   \(a^3=\sqrt{2}-1\)

=>   \(x=a-\frac{1}{a}\)

=>   \(x^3=a^3-\frac{1}{a^3}-3a+\frac{3}{a}\)

<=>   \(x^3=\sqrt{2}-1-\frac{1}{\sqrt{2}-1}-3\left(a-\frac{1}{a}\right)\)

<=>   \(x^3=\frac{\left(\sqrt{2}-1\right)^2-1}{\sqrt{2}-1}-3x\)

<=>   \(x^3+3x=\frac{3-2\sqrt{2}-1}{\sqrt{2}-1}\)

<=>   \(x^3+3x=\frac{2-2\sqrt{2}}{\sqrt{2}-1}\)

<=>   \(x^3+3x=\frac{2\left(1-\sqrt{2}\right)}{\sqrt{2}-1}\)

<=>   \(x^3+3x=-2\)

<=>   \(x^3+3x+2=0\Rightarrow P=0\)

VẬY    \(P=0\)

23 tháng 8 2020

Đặt \(a=\sqrt[3]{\sqrt{2}-1};b=\frac{1}{\sqrt[3]{\sqrt{2}-1}}\Rightarrow\hept{\begin{cases}x=a-b\\ab=1\end{cases}}\)

Xét \(x^3=\left(a-b\right)^3=a^3-b^3-3ab\left(a-b\right)\)

\(x^3=\left(\sqrt{2}-1\right)-\frac{1}{\sqrt{2}-1}-3x\)

\(\Leftrightarrow x^3=-2-3x\Leftrightarrow x^3+3x+2=0\)

Vậy P=0

6 tháng 8 2017

\(\frac{A}{\sqrt{2}}=\frac{1+\sqrt{7}}{2+\sqrt{8+2\sqrt{7}}}+\frac{1-\sqrt{7}}{2-\sqrt{8-2\sqrt{7}}}\)

         \(=\frac{1+\sqrt{7}}{2+1+\sqrt{7}}+\frac{1-\sqrt{7}}{2-\sqrt{7}+1}\)

            \(=\frac{1+\sqrt{7}}{3+\sqrt{7}}+\frac{1-\sqrt{7}}{3-\sqrt{7}}\)

           =\(\frac{\left(1+\sqrt{7}\right)\left(3-\sqrt{7}\right)+\left(1-\sqrt{7}\right)\left(3+\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)

          \(=\frac{-8}{2}=-4\)

\(\Rightarrow A=-4\sqrt{2}\)