\(x>y>z.\)Chứng minh rằng biểu thức 

\(A=x^4\left(y-...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

\(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

\(=x^4y-x^4z+y^4z-y^4x+z^4\left(x-y\right)\)

\(=xy\left(x^3-y^3\right)-z\left(x^4-y^4\right)+z^4\left(x-y\right)\)

\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)-z\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)+z^4\left(x-y\right)\)

\(=\left(x-y\right)\left[xy\left(x^2+xy+y^2\right)-z\left(x^3+x^2y+xy^2+y^3\right)+z^4\right]\)

\(=\left(x-y\right)\left(x^3y+x^2y^2+xy^3-x^3z-x^2yz-xy^2z-y^3z+z^4\right)\)

\(=\left(x-y\right)\left[x^3\left(y-z\right)+x^2y\left(y-z\right)+xy^2\left(y-z\right)-z\left(y^3-z^3\right)\right]\)

\(=\left(x-y\right)\left[x^3\left(y-z\right)+x^2y\left(y-z\right)+xy^2\left(y-z\right)-z\left(y-z\right)\left(y^2+yz+z^2\right)\right]\)

\(=\left(x-y\right)\left(y-z\right)\left[x^3+x^2y+xy^2-z\left(y^2+yz+z^2\right)\right]\)

\(=\left(x-y\right)\left(y-z\right)\left(x^3+x^2y+xy^2-y^2z-yz^2-z^3\right)\)

\(=\left(x-y\right)\left(y-z\right)\left[x^3-z^3+y\left(x^2-z^2\right)+y^2\left(x-z\right)\right]\)

\(=\left(x-y\right)\left(y-z\right)\left[\left(x-z\right)\left(x^2+xz+z^2\right)+y\left(x-z\right)\left(x+z\right)+y^2\left(x-z\right)\right]\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\left[x^2+xz+z^2+y\left(x+z\right)+y^2\right]\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{2\left(x^2+xz+z^2+xy+yz+y^2\right)}{2}\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{x^2+2xz+z^2+x^2+xy+y^2+y^2+yz+z^2}{2}\)

\(\left(x-y\right)\left(y-z\right)\left(x-z\right)\frac{\left(x+z\right)^2+\left(x+y\right)^2+\left(y+z\right)^2}{2}\)

\(Ta\)\(có\)\(x>y>z\Rightarrow\left(x-y\right);\left(y-z\right);\left(x-z\right)>0\)

                 \(\left(x+z\right)^2;\left(y+z\right)^2;\left(x+y\right)^2\ge0\)

\(\Rightarrow A>o\Rightarrow A\)\(luôn\)\(dương\)

16 tháng 7 2019

Câu hỏi của Trần Thùy Dung - Toán lớp 8 - Học toán với OnlineMath

Vào tham khảo nha !

Không hiển thị màu xanh thì bạn nhấn vào câu hỏi tương tự ý !

16 tháng 7 2019

Lick :

https://olm.vn/hoi-dap/detail/54197989738.html

Cố mà đánh nha !

2 tháng 11 2019

\(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

\(A=x^4\left(y-z\right)+y^4\left(z-x\right)-z^4\left[\left(y-z\right)+\left(z-x\right)\right]\)

\(A=x^4\left(y-z\right)-z^4\left(y-z\right)+y^4\left(z-x\right)-z^4\left(z-x\right)\)

\(A=\left(y-z\right)\left(x^4-z^4\right)+\left(z-x\right)\left(y^4-z^4\right)\)

\(A=\left(y-z\right)\left(x-z\right)\left(x+z\right)\left(x^2+z^2\right)-\left(x-z\right)\left(y-z\right)\left(y+z\right)\left(y^2+z^2\right)\)

\(A=\left(y-z\right)\left(x-z\right)\left(x^3+xz^2+x^2z+z^3-y^3-yz^2-y^2z-z^3\right)\)

\(A=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left(x^2+xy+y^2+z^2+zx+yz\right)\)

\(A=\frac{1}{2}\left(x-y\right)\left(y-z\right)\left(x-z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\right]\)

Vì \(x>y>z\Rightarrow A>0\)

8 tháng 10 2018

Sửa đề z^4(z-y) thành z^4(x-y)

Đặt \(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

\(=x^4\left(y-x+x-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

\(=-x^4\left(x-y\right)+x^4\left(x-z\right)-y^4\left(x-z\right)+z^4\left(x-y\right)\)

\(=\left(x-y\right)\left(z^4-x^4\right)+\left(x-z\right)\left(x^4-y^4\right)\)

\(=\left(x-y\right)\left(z^2+x^2\right)\left(z^2-x^2\right)+\left(x-z\right)\left(x^2+y^2\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(z^2+x^2\right)\left(x+z\right)\left(z-x\right)+\left(x-z\right)\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)\)

\(=\left(x-y\right)\left(z-x\right)\left[\left(z^2+x^2\right)\left(x+z\right)-\left(x^2+y^2\right)\left(x+y\right)\right]\)

\(=\left(x-y\right)\left(z-x\right)\left(xz^2+z^3+x^3+x^2z-x^3-x^2y-xy^2-y^3\right)\)

\(=\left(x-y\right)\left(z-x\right)\left[x^2\left(z-y\right)+x\left(z^2-y^2\right)+\left(z^3-y^3\right)\right]\)

\(=\left(x-y\right)\left(z-x\right)\left(z-y\right)\left[x^2+x\left(z+y\right)+\left(z^2+yz+y^2\right)\right]\)

\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(x^2+xz+xy+z^2+yz+y^2\right)\)

\(=\frac{1}{2}\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(2x^2+2y^2+2z^2+2xy+2yz+2xz\right)\)

\(=\frac{1}{2}\left(x-y\right)\left(x-z\right)\left(y-z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\right]\)

Vì \(x>y>z\Rightarrow\hept{\begin{cases}x-y>0\\x-z>0\\y-z>0\end{cases}}\) và \(\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\ge0\)

=>....

25 tháng 3 2017

Đặt: \(E=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Ta có: \(F-E=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)

\(\Leftrightarrow F=E\)

Từ đó ta có:

\(2F=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\frac{\left(x^2+y^2\right)}{2\left(x+y\right)}+\frac{\left(y^2+z^2\right)}{2\left(y+z\right)}+\frac{\left(z^2+x^2\right)}{2\left(z+x\right)}\)

\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)

\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)

\(\Rightarrow F\ge\frac{1}{4}\)

Dấu = xảy ra khi \(x=y=z=\frac{1}{3}\)

25 tháng 3 2017

Bạn ơi, cho mình hỏi này

Sao có \(\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\)  và sao có  \(\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}\)  

Giải đáp tận tình hộ mình nhé.

24 tháng 12 2017
ghhjkkkk
2 tháng 8 2019

Đẳng thức ban đầu \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=4x^2+4y^2+4z^2-4xy-4yz-4zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow x=y=z\)

29 tháng 8 2017

cha ôi rk mà cx ko bt

3 tháng 10 2017

khó vcl

28 tháng 8 2021

Áp dụng BĐT BSC và BĐT Cosi:

\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge17\left(x+y+z\right)+\frac{2.\left(1+1+1\right)^2}{x+y+z}\)

\(=17\left(x+y+z\right)=\frac{18}{x+y+z}\)

\(=17\left(x+y+z\right)=\frac{17}{x+y+z}+\frac{1}{x+y+z}\)

\(\ge2\sqrt{17\left(x+y+z\right).\frac{17}{x+y+z}}+\frac{1}{1}\)

\(=35\)

\(\Rightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

28 tháng 8 2021

Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y + z ≤ 1 ta có :

\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=17x+17y+17z+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)

\(=\left(18x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(18z+\frac{2}{z}\right)-\left(x+y+z\right)\)

\(\ge2\sqrt{18x\cdot\frac{2}{x}}+2\sqrt{18y\cdot\frac{2}{y}}+2\sqrt{18z\cdot\frac{2}{z}}-1=12\cdot3-1=35\)( đpcm )

Dấu "=" xảy ra <=> x=y=z=1/3