K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

Cộng vế với vế ta được:

\(x+y+z=2\left(ax+by+cz\right)\)

Thay thích hợp ta được:

\(x+y+z=2\left(z+cz\right)=2z\left(1+c\right)\Rightarrow1+c=\frac{x+y+z}{2z}\)

Tương tự ta có:

\(1+b=\frac{x+y+z}{2y};1+a=\frac{x+y+z}{2x}\)

Thay vào B ta có:

\(B=\sqrt{\frac{2}{\frac{x+y+z}{2x}}+\frac{2}{\frac{x+y+z}{2y}}+\frac{2}{\frac{x+y+z}{2z}}}\)

\(=\sqrt{\frac{4x}{x+y+z}+\frac{4y}{x+y+z}+\frac{4z}{x+y+z}=\frac{4\left(x+y+z\right)}{x+y+z}}\)

\(=\sqrt{4}=2\)

Đúng thì k, sai thì sửa, mai mình nộp cho cô rồi

8 tháng 1 2017

Đặt B là mẫu thức của P thì :

B = ab(x - y)2 + bc(y - z)2 + ca(z - x)2 = abx2 - 2abxy + aby2 + bcy2 - 2bcyz + bcz2 + caz2 - 2cazx + cax2

   = ax2(b + c) + by2(a + c) + cz2(a + b) - 2(bcyz + acxz + abxy) (1)

ax + by + cz = 0 => (ax + by + cz)2 = 0 <=> a2x2 + b2y2 + c2z2 + 2(bcyz + acxz + abxy) = 0 

=> -2(bcyz + acxz + abxy) = a2x2 + b2y2 + c2z2 (2)

Từ (1) và (2),ta có : B = ax2(b + c) + by2(a + c) + cz2(a + b) + a2x2 + b2y2 + c2z2

= ax2(a + b + c) + by2(a + b + c) + cz2(a + b + c) = (a + b + c)(ax2 + by2 + cz2)

\(\Rightarrow P=\frac{1}{a+b+c}=2017\)

8 tháng 1 2017

P=2017

19 tháng 10 2020

Bạn chắc đề đúng chứ?

Theo Maple, nếu không có điều kiện gì thêm giữa x, y, z thì không có giá trị chính xác cho biểu thức T.

MVbSgfU.png

25 tháng 5 2017

Đặt \(Q=\sqrt[3]{ax^{2\:}+by^2+cz^2}=\sqrt[3]{\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}}\)

\(=\sqrt[3]{\frac{ax^3}{x}+\frac{ax^3}{y}+\frac{ax^3}{z}}=\sqrt[3]{ax^3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}=\sqrt[3]{ax^{3\:}}=x\sqrt[3]{a}\)

\(\Rightarrow\sqrt[3]{a}=\frac{Q}{x}\)

Tương tự ta có: \(\hept{\begin{cases}\sqrt[3]{b}=\frac{Q}{y}\\\sqrt[3]{c}=\frac{Q}{z}\end{cases}}\)

\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\frac{Q}{x}+\frac{Q}{y}+\frac{Q}{z}=Q\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=Q\)

Vậy....

25 tháng 5 2017

Đẳng thức cần chứng minh tương đương với

\(ax^2+by^2+cz^2=\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)^3\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(ax^2+by^2+cz^2\right)\)

\(\ge\left(\sqrt[3]{\frac{1}{x}\cdot\frac{1}{x}\cdot ax^2}+\sqrt[3]{\frac{1}{y}\cdot\frac{1}{y}\cdot by^2}+\sqrt[3]{\frac{1}{z}\cdot\frac{1}{z}\cdot cz^2}\right)^3\)

\(=\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)^3=VP\)

Do \(ax^2=by^2=cz^2\) nên đẳng thức có xảy ra 

1 tháng 8 2016

ĐẶT: T= \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}}=\sqrt[3]{ax^3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}=x\sqrt[3]{a}\)
\(\Rightarrow\sqrt[3]{a}=\frac{T}{x}\)
tuowng tự ta đc \(\sqrt[3]{b}=\frac{T}{y};\sqrt[3]{c}=\frac{T}{z}\)
\(\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\frac{T}{x}+\frac{T}{y}+\frac{T}{z}=T\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=T\left(dpcm\right)\)

2 tháng 8 2016

cám ơn  bạn nha!

2 tháng 8 2016

Có: A= \(\sqrt[3]{ax^2+by^2+cz^2}\) = \(\sqrt[3]{\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}}\) = \(\sqrt[3]{ax^3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\) 

\(\sqrt[3]{ax^3}\) = \(\sqrt[3]{a}x\) =>\(\sqrt[3]{a}\) =\(\frac{A}{x}\)

Tương tự : \(\sqrt[3]{b}=\frac{A}{y}\)   ,    \(\sqrt[3]{c}=\frac{A}{z}\)

=> \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\) = \(\frac{A}{x}+\frac{A}{y}+\frac{A}{z}\) = A \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) = A

hay \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\) = \(\sqrt[3]{ax^2+by^2+cz^2}\)

8 tháng 1 2017

Đặt \(ax^4=by^4=cz^4=t\)\(\Rightarrow a=\frac{t}{x^4};b=\frac{t}{y^4};c=\frac{t}{z^4}\)

Ta có: \(VT=\sqrt{ax^2+by^2+cz^2}=\sqrt{\frac{t}{x^2}+\frac{t}{y^2}+\frac{t}{z^2}}\)

\(=\sqrt{t\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}=\sqrt{t}\left(1\right)\)

\(VP=\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{\frac{t}{x^4}+}\sqrt{\frac{t}{y^4}}+\sqrt{\frac{t}{z^4}}\)

\(=\frac{\sqrt{t}}{x^2}+\frac{\sqrt{t}}{y^2}+\frac{\sqrt{t}}{z^2}=\sqrt{t}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)=\sqrt{t}\left(2\right)\)

Từ (1) và (2) ta có điều phải chứng minh

8 tháng 1 2017

Đúng rồi đấy!

19 tháng 8 2019

đặt \(ax^3=by^3=cz^3=k^3\) thì \(a=\frac{k^3}{x^3};b=\frac{k^3}{y^3};c=\frac{k^3}{z^3}\)

\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\frac{k}{x}+\frac{k}{y}+\frac{k}{z}=k\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=k\)

Mặt khác : \(ax^2+by^2+cz^2=\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}=\frac{k^3}{x}+\frac{k^3}{y}+\frac{k^3}{z}=k^3\)

\(\Rightarrow\sqrt[3]{ax^2+by^2+cz^2}=k\)

Do đó , ta có đpcm

7 tháng 7 2023

\(\sin90\)