\(\widehat{xOy}=90\)độ.Tia Oz là tia nằm trong \(\widehat{xOy}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét \(\Delta AOD\)và \(\Delta COB\)

\(OA=OC\left(gt\right)\)

\(AOD=COB\left(=90-DOC\right)\)

\(OD=OB\left(gt\right)\)

\(\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\Rightarrow ADO=CBO\left(1\right)\)

Gọi giao điểm của BF và OD là M

\(\)Ta có \(FMD=OMB\left(2\right)\)(đối đỉnh)

\(\left(1\right)\left(2\right)\Rightarrow ADO+FMD=OMB+CBO\Rightarrow FDM+FMD=MBO+OMB\)

\(\Rightarrow180-MFD=180-MOB=180-90\left(MOB=DOB=90\right)\Rightarrow MFD=90\)

Vậy \(BF\perp AD\)

3 tháng 1 2019

O x y z t A B C D F 1 2 3 E

Gọi E là giao điểm của Oy và AD

Ta có: \(\widehat{O_1}+\widehat{O_2}=\widehat{COB}\)(do tia OA nằm giữa hai tia OC và OB)

          ​\(\widehat{O_3}+\widehat{O_2}=\widehat{AOD}\)(do tia OB nằm giữa hai tia OA và OD)

    Mà \(\widehat{O_1}=\widehat{O_3}=90^o\)(do \(Oz\perp Ox,Ot\perp Oy\))

Do đó: ​\(\widehat{COB}=\widehat{AOD}\)

\(\Delta AOD\)và \(\Delta COB\)có: 

       \(\widehat{COB}=\widehat{AOD}\)(c.m.t)

       OA = OC (theo gt) 

       OB = OD (theo gt)

Do đó: \(\Delta AOD\)=\(\Delta COB\)(c.g.c)

\(\Delta FBE\) có: \(\widehat{EFB}+\widehat{FEB}+\widehat{FBE}=180^o\)(theo định lí tổng ba góc của một tam giác)​

\(\Delta OED\) có: \(\widehat{O_3}+\widehat{ODE}+\widehat{OED}=180^o\)(theo định lí tổng ba góc của một tam giác)​

     Mà \(\widehat{FBE}=\widehat{ODE}\) (do ​\(\Delta COB\)\(\Delta AOD\))

            \(\widehat{FEB}=\widehat{OED}\)(2 góc đối đỉnh)

Suy ra: \(\widehat{EFB}=\widehat{O_3}\)

        Mà \(\widehat{O_3}=90^o\)(do \(Oy\perp Ot\))

Do đó: \(\widehat{EFB}=90^o\)nên \(BF\perp FA\)

mik nha, mik mất công làm lắm đó! ^_^

14 tháng 12 2019

Hình bạn tự vẽ nha!

a) Vì \(Oz\) là tia phân giác của \(\widehat{xOy}\left(gt\right)\)

\(A\in Oz\left(gt\right)\)

=> \(OA\) là tia phân giác của \(\widehat{xOy}.\)

Hay \(OA\) là tia phân giác của \(\widehat{BOC}.\)

Xét 2 \(\Delta\) vuông \(ABO\)\(ACO\) có:

\(\widehat{ABO}=\widehat{ACO}=90^0\left(gt\right)\)

Cạnh AO chung

\(\widehat{BOA}=\widehat{COA}\) (vì \(OA\) là tia phân giác của \(\widehat{BOC}\))

=> \(\Delta ABO=\Delta ACO\) (cạnh huyền - góc nhọn).

b) Theo câu a) ta có \(\Delta ABO=\Delta ACO.\)

=> \(BO=CO\) (2 cạnh tương ứng).

Xét 2 \(\Delta\) vuông \(BOI\)\(COI\) có:

\(\widehat{OBI}=\widehat{OCI}=90^0\)

\(BO=CO\left(cmt\right)\)

Cạnh OI chung

=> \(\Delta BOI=\Delta COI\) (cạnh huyền - cạnh góc vuông).

=> \(IB=IC\) (2 cạnh tương ứng).

Chúc bạn học tốt!

28 tháng 2 2019

o x y z A B C D M

28 tháng 2 2019

bÂY GIỜ CÂU 1 MÌNH ĐÃ LÀM ĐC NHƯ THẾ NÀY RỒI

11 tháng 6 2017

Vì Om là phần giác của \(\widehat{zOt}\)

=> \(\widehat{mOz}=\widehat{mOt}\)

Mặt khác : \(\widehat{zOy}=\widehat{tOx}=30^0\)

=> \(\widehat{mOz}+\widehat{zOy}=\widehat{mOt}+\widehat{tOx}\)

=> \(\widehat{yOm}=\widehat{mOx}\)

Vậy Om cũng là phân giác của \(\widehat{xOy}\)

11 tháng 6 2017

x O y 30 30 z m t