Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không chép lại đề nhé
Ta có:
P=\(\frac{50-49}{49}+\frac{50-48}{48}+...+\frac{50-2}{2}+\frac{50-1}{1}\)
P=\(\frac{50}{49}-\frac{49}{49}+\frac{50}{48}-\frac{48}{48}+...+\frac{50}{2}-\frac{2}{2}+\frac{50}{1}-\frac{1}{1}\)
P=\(\left(\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\right)+\frac{50}{1}-\left(\frac{49}{49}+\frac{48}{48}+...+\frac{2}{2}+\frac{1}{1}\right)\)
P=\(50\cdot\left(\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)+50-49\) (chỗ này gộp nha)
P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{48}+\frac{1}{49}\right)+1\)
P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)+\frac{50}{50}\)
P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)\)
=>P=50S
=>\(\frac{S}{P}=\frac{S}{50S}=\frac{1}{50}\)
Vừa nãy mình nói nhầm, Sorry.
M=1+1/2^2+1/3^2+1/4^2+...+1/10^2>1+1/2*3+1/3*4+1/4^5+...+1/10*11
M>1+1/2-1/3+1/4-1/4+1/5-...-1/11
M>1+1/2-1/11
M>1+9/22
M>31/22
vì 31/22>4/3 nên M>4/3
Ta có:
\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(=\frac{1}{4}+\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)
Đặt \(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(B=\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}\right)+\left(\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)
Giả sử tất cả các số hạng của B đều bằng \(\frac{1}{6^2}\)
\(\Rightarrow B=6.\frac{1}{6^2}=\frac{6}{36}=\frac{1}{6}<\frac{1}{4}\)
Do đó \(B<\frac{1}{4}\)
\(\Rightarrow A=\frac{1}{4}+B<\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
Vậy \(A<\frac{1}{2}\)
Ta có :
\(S=2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+..+2016}\)
\(=2015.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+2016}\right)\)
\(=2015.\left(1+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2016+1\right).2016}{2}}\right)\)
\(=2015.\left(\frac{2}{2}+\frac{2}{2.\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{2016.\left(2016+1\right)}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2.\left(2+1\right)}+\frac{1}{3.\left(3+1\right)}+...+\frac{1}{2016.\left(2016+1\right)}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2017}\right)\)
\(=2015.2.\left(1-\frac{1}{2017}\right)\)
\(=2015.2.\frac{2016}{2017}\)
=\(\frac{2015.2.2016}{2017}\)
=\(\frac{8124480}{2017}\)
Vậy \(S=\frac{8124480}{2017}\)
Câu 1 :\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{98}{100}=\frac{1}{100}\)
Thay a,b,c lần lượt vào biểu thức...
Tính được kết quả:
a) A= \(-\frac{7}{10}\)
b) B= \(-\frac{2}{7}\)
c) C= 0
a: \(B=\left(-\dfrac{1}{5}-\dfrac{5}{7}+\dfrac{-3}{35}\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{2}\right)+\dfrac{1}{41}\)
\(=\dfrac{-7-25-3}{35}+\dfrac{3+2+1}{6}+\dfrac{1}{41}=\dfrac{42}{41}-1=\dfrac{1}{41}\)
Mình chọn nhỏ hơn
lm tốt nhưng mink k tích vì k có cách trình bày