Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{2}{2^1}+\dfrac{3}{2^2}+...+\dfrac{2017}{2^{2016}}\)
\(\Rightarrow2S=2+\dfrac{3}{2^1}+\dfrac{4}{2^2}+...+\dfrac{2017}{2^{2015}}\)
\(\Rightarrow2S-S=\left(2+\dfrac{3}{2^1}+\dfrac{4}{2^2}+...+\dfrac{2017}{2^{2015}}\right)-\left(\dfrac{2}{2^1}+\dfrac{3}{2^2}+...+\dfrac{2017}{2^{2016}}\right)\)
\(\Leftrightarrow S=2+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}-\dfrac{2017}{2^{2016}}\)
Tới đây thì đơn giản rồi nhé
\(S_n=1-\dfrac{1}{n^2}\) xét tổng \(U_n=\dfrac{1}{n^2}\) với n >=2
cơ bản có \(\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}=\dfrac{1}{n-1}-\dfrac{1}{n}\)
<=>\(U< 1-\dfrac{1}{n-1}\)
cơ bản có \(\dfrac{1}{n^2}>\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
<=>\(U>1-\dfrac{1}{n+1}\)
<=>\(1-\dfrac{1}{n-1}< U< 1-\dfrac{1}{n+1}\)
với n >2 => 1/(n-1) ; 1/(n+1) là hai phân số <1
=> U không phải là số nguyên
=> S không là số nguyên => dpcm
baì1 k=1 có tập số nguên tố . 2;3;5;7;11=5 ptử. với k>1 trong 10 số liên tiếp có 5 số chẵn và 5 số lẻ trong 5 số lẻ ít nhất có hai số chia hết cho 3. vậy với k >1 tập hợp số ntố <5 phân tử. kết luận k=1
\(S=\dfrac{1}{2018}\left(1+\dfrac{1}{1}+1+\dfrac{1}{2}+1+\dfrac{1}{3}+...+1+\dfrac{1}{2018}\right)\)
\(S=\dfrac{1}{2018}\left(2018+\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)
\(S=1+\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)
Do \(\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2018}\right)>0\Rightarrow S>1\) (1)
Lại có:
\(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}< \dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}+...+\dfrac{1}{1}=2018\)
\(\Rightarrow1+\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)< 1+\dfrac{1}{2018}.2018=2\)
\(\Rightarrow S< 2\) (2)
Từ (1), (2) \(\Rightarrow1< S< 2\)
\(\Rightarrow S\) nằm giữa 2 số tự nhiên liên tiếp nên S không phải là số tự nhiên
2: \(A=9^n\cdot81-9^n+3^n\cdot9+3^n\)
\(=9^n\cdot80+3^n\cdot10\)
\(=10\left(9^n\cdot8+3^n\right)⋮10\)
Ta có :
x-y-z=0 => y+z=x (*(
Thay (*) và đa thức M ta có :
M=\(xyz-xy^2-xz^2=\left(y+z\right)yz-\left(y+z\right)y^2-\left(y+z\right)z^2\)
=\(y^2z+yz^2-y^3-zy^2-z^2y-z^3\)
=\(\left(y^2z-y^2z\right)-\left(z^2y-z^2y\right)-\left(y^3+z^3\right)\)
=\(-\left(y^3+z^3\right)\)
Mà \(-\left(y^3+z^3\right)\) là số đối của \(\left(y^3+z^3\right)\) nên M và N là 2 đa thức đối nhau.
Câu 1 :
\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)
=\(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+.......+\dfrac{1}{2012}\right)\)=\(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{1006}\right)\)
\(=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2013}\)=P
Vậy S=P
Lời giải:
$n=1$ thì $S=0$ nguyên nhé bạn. Phải là $n>1$
\(S=1-\frac{1}{1^2}+1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{n^2}\)
\(=n-\underbrace{\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)}_{M}\)
Để cm $S$ không nguyên ta cần chứng minh $M$ không nguyên. Thật vậy
\(M> 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n(n+1)}=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)
\(M>1+\frac{1}{2}-\frac{1}{n+1}>1\) với mọi $n>1$
Mặt khác:
\(M< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{(n-1)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\)
\(M< 1+1-\frac{1}{n}< 2\)
Vậy $1< M< 2$ nên $M$ không nguyên. Kéo theo $S$ không nguyên.
Cảm ơn thầy ạ