K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

a.(ĐKXĐ: \(a\ge0,a\ne\dfrac{1}{9}\))

=> \(A=\left(\dfrac{\sqrt{a}-1}{3\sqrt{a}-1}-\dfrac{1}{1+3\sqrt{a}}+\dfrac{8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\right):\dfrac{3\sqrt{a}+1-3\sqrt{a}+2}{3\sqrt{a}+1}=\dfrac{\left(\sqrt{a}-1\right)\left(1+3\sqrt{a}\right)-3\sqrt{a}+1+8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}.\dfrac{3\sqrt{a}+1}{3}\)

\(=\dfrac{\sqrt{a}+3a-1-3\sqrt{a}-3\sqrt{a}+1+8\sqrt{a}}{3\left(3\sqrt{a}-1\right)}=\dfrac{3\sqrt{a}+3a}{3\left(3\sqrt{a}-1\right)}=\dfrac{3\left(\sqrt{a}+a\right)}{3\left(3\sqrt{a}-1\right)}=\dfrac{\sqrt{a}+a}{3\sqrt{a}-1}\)

b. Để A \(=\dfrac{6}{5}\Leftrightarrow\dfrac{\sqrt{a}+a}{3\sqrt{a}-1}=\dfrac{6}{5}\)

\(\Leftrightarrow5\left(\sqrt{a}+a\right)=6\left(3\sqrt{a}-1\right)\)

\(\Leftrightarrow5\sqrt{a}+5a-18\sqrt{a}+6=0\)

\(\Leftrightarrow5a-13\sqrt{a}+6=0\)

\(\Leftrightarrow5a-10\sqrt{a}-3\sqrt{a}+6=0\)

\(\Leftrightarrow5\sqrt{a}\left(\sqrt{a}-2\right)-3\left(\sqrt{a}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{a}-2\right)\left(5\sqrt{a}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}-2=0\\5\sqrt{a}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=2\\\sqrt{a}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=4\\a=\dfrac{9}{25}\end{matrix}\right.\)(nhận)

Vậy ...

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

4 tháng 9 2017

a) \(\sqrt{\left(\sqrt{7-2}\right)^2}=\sqrt{5}\)

b)\(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2-3\sqrt{2}\right)^2}\)

=\(\sqrt{2}-1-2+3\sqrt{2}=4\sqrt{2}-3\)

c)\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

=\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}=2\sqrt{3}\)

d) hình như bn ghi sai

e)\(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

=\(\left(\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{4-2\sqrt{3}}}+\dfrac{\sqrt{2-\sqrt{3}}}{\sqrt{4+2\sqrt{3}}}\right):\sqrt{2}\)

=\(\left(\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{3}-1}+\dfrac{\sqrt{2-\sqrt{3}}}{\sqrt{3}+1}\right):\sqrt{2}\)

=\(\dfrac{\sqrt{2+\sqrt{3}}\left(\sqrt{3}+1\right)+\sqrt{2-\sqrt{3}}\left(\sqrt{3}-1\right)}{2\sqrt{2}}\)

=\(\dfrac{\sqrt{6+3}+\sqrt{2+\sqrt{3}}+\sqrt{6-3}-\sqrt{2+\sqrt{3}}}{2\sqrt{2}}\)

=\(\dfrac{3+\sqrt{2+\sqrt{3}}+\sqrt{3}-\sqrt{2+\sqrt{3}}}{2\sqrt{2}}\)

=\(\dfrac{3+\sqrt{3}}{2\sqrt{2}}\)

f) \(\sqrt{9a^2}+3a-7=-3a+3a-7=-7\)

g)\(\dfrac{\sqrt{4x^2-4x+1}}{4x-2}+3x+2\)

=\(\dfrac{\sqrt{\left(2x-1\right)^2}}{4x-2}+3x+2=\dfrac{2x-1}{2\left(2x-1\right)}+3x+2\)

=\(\dfrac{1}{2}+3x+2=\dfrac{5}{2}+3x\)

h)\(\sqrt{\left(5a-1\right)^2}+2a-3\)

nếu a<0 :\(-5a+1+2a-3=-3a-2\)

nếu a>0 : \(5a-1+2a-3=7a-4\)

i)\(\sqrt{\dfrac{2a}{5}}.\sqrt{\dfrac{5a}{18}}+2\left(a-1\right)\)

=\(\sqrt{\dfrac{10a^2}{90}}+2a-2=\sqrt{\dfrac{a^2}{9}}+2a-2\)

=\(\dfrac{a}{3}+2a-2=\dfrac{7a}{3}-2\)

a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)

b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)

\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)

\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)

c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)

30 tháng 4 2018

Bài 1:

a)Với x > 0;x ≠ 4 ta có:

\(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right)\cdot\dfrac{x+2\sqrt{x}}{\sqrt{x}}\)

\(=\left(\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

\(=\dfrac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\left(\sqrt{x}+2\right)-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\cdot\left(\sqrt{x}+2\right)\)

\(=\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4}{x-4}\)

c)\(\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{a}}{\sqrt{ab}-b}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)

\(=\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right)\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\dfrac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=b-a\)

30 tháng 4 2018

Bài 2:

a)Với a > 0;a ≠ 1;a ≠ 2 ta có

\(P=\left(\dfrac{\sqrt{a}^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}\)

\(=\left(\dfrac{a+\sqrt{a}+1}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}\right)\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{2\sqrt{a}}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}=\dfrac{2\left(a-2\right)}{a+2}\)

b)Ta có:

\(P=\dfrac{2\left(a-2\right)}{a+2}=\dfrac{2a-4}{a+2}=\dfrac{2\left(a+2\right)-8}{a+2}=2-\dfrac{8}{a+2}\)

P nguyên khi \(2-\dfrac{8}{a+2}\) nguyên⇒\(\dfrac{8}{a+2}\) nguyên⇒\(a+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(TH1:a+2=1\Rightarrow a=-1\left(loai\right)\)

\(TH2:a+2=-1\Rightarrow a=-3\left(loai\right)\)

\(TH3:a+2=2\Rightarrow a=0\left(loai\right)\)

\(TH4:a+2=-2\Rightarrow a=-4\left(loai\right)\)

\(TH5:a+2=4\Rightarrow a=2\left(loai\right)\)

\(TH6:a+2=-4\Rightarrow a=-6\left(loai\right)\)

\(TH7:a+2=8\Rightarrow a=6\left(tm\right)\)

\(TH8:a+2=-8\Rightarrow a=-10\left(loai\right)\)

Vậy a = 6

13 tháng 3 2017

DAT P = Q:R \(Q=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(3\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(3\sqrt{a}-1\right)}+\dfrac{8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\)

\(=\dfrac{\sqrt{a}-1}{3\sqrt{a}-1}-\dfrac{1}{3\sqrt{a}+1}+\dfrac{8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\)

\(=\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\)

\(R=1-\dfrac{2\sqrt{a}-a+1}{3\sqrt{a}+1}=\dfrac{a+\sqrt{a}}{3\sqrt{a}+1}=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{3\sqrt{a}+1}\)

\(\Rightarrow P=Q:R=\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\times\dfrac{3\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\)

\(P=\dfrac{3}{3\sqrt{a}-1}\)

\(P>\dfrac{3}{\left|1-3\sqrt{5}\right|}\Leftrightarrow\dfrac{3}{3\sqrt{a}-1}>\dfrac{3}{3\sqrt{5-1}}\)

\(3\sqrt{a}-1< 3\sqrt{5}-1\)

\(\Rightarrow0\le\sqrt{a}\le\sqrt{5}\)

\(a=\) 0 ;1 ;2 ;3 ;4

​a lớn nhất \(\Rightarrow a\) = 4

13 tháng 3 2017

Bạn rút gọn được P chưa ?~!