Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
\(M=\frac{x+3}{7+x}=\frac{x+3}{x+7}\)
(*) M>0 <=> x+3 và x+7 cùng dấu
\(\left(+\right)\hept{\begin{cases}x+3< 0\\x+7< 0\end{cases}=>\hept{\begin{cases}x< -3\\x< -7\end{cases}=>x< -7}}\)
\(\left(+\right)\hept{\begin{cases}x+3>0\\x+7>0\end{cases}=>\hept{\begin{cases}x>-3\\x>-7\end{cases}=>x>-3}}\)
Vậy x<-7 hoặc x>-3 thì thỏa mãn M>0
(*)M<0 <=> x+3 và x+7 trái dấu
Mà x+3<x+7
\(=>\hept{\begin{cases}x+3< 0\\x+7>0\end{cases}=>\hept{\begin{cases}x< -3\\x>-7\end{cases}=>-7< x< -3}}\)
Vậy......
(*)M nguyên <=> x+3 chia hết cho x+7
<=>(x+7)-4 chia hết cho x+7
Mà x+7 chia hết cho x+7
=>-4 chia hết cho x+7=>x+7 E Ư(-4)={...},tới đây bn đã có thể tự làm tiếp rồi nhé
(*)M>1 \(< =>M=\frac{x+3}{x+7}>1< =>\frac{x+3}{x+7}-1>0< =>\frac{x+3-x-7}{x+7}>0< =>\frac{-4}{x+7}>0< =>x< -7\)
1: Khi x=0 thì \(A=\dfrac{0+6}{0+1}=\dfrac{6}{1}=6\)
Khi x=2 thì \(A=\dfrac{2+6}{2+1}=\dfrac{8}{3}\)
Khi x=-2 thì \(A=\dfrac{-2+6}{-2+1}=\dfrac{4}{-1}=-4\)
2: Để A là số nguyên thì \(x+6⋮x+1\)
\(\Leftrightarrow x+1+5⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{0;-2;4;-6\right\}\)
5: Để A>0 thì \(\dfrac{x+6}{x+1}>0\)
=>x>-1 hoặc x<-6
6: Để A<0 thì \(\dfrac{x+6}{x+1}< 0\)
=>-6<x<-1
Ta có :
\(5x^4\ge0\forall x\)
\(2x^2\ge0\forall x\)
\(\Rightarrow5x^4+2x^2+\frac{3}{16}\ge\frac{3}{16}\forall x\)
\(\Rightarrow M\ge\frac{3}{16}\)
Nên : \(M\ne0\)
\(\Rightarrow\)Không có giá trị nào của \(x\)để \(M\left(x\right)=0\)
~ Ủng hộ nhé
Ta có: \(M\left(x\right)=5x^4+2x^2+\frac{3}{16}\)
\(M\left(x\right)\ge\frac{3}{16}\forall x.\)
Vậy không có giá trị nào của x để \(M\left(x\right)=0\) \(\Rightarrow\)M(x) vô nghiệm.
Kb vs cho tớ nhé mn! ^.^
1)
a) x.x - 3 = 0
x^2 = 3
=> x = \(\sqrt{3}\)
b) x.x - 3 > 0
x^2 > 3
=> x > 2 và x < -2
c) x.x - 3 <0
x^2 < 3
mà x^2 luôn lớn hơn hoặc bằng 0
=> x^2 = 0; 1; 2
=> x = 0; \(\sqrt{1}\); \(\sqrt{2}\)
ĐKXĐ: \(x\ne0\)
+ M < 0 \(\Rightarrow\frac{x-1}{x}< 0\)
Vậy 0 < x < 1
+ M > 0 \(\Rightarrow\frac{x-1}{x}>0\)
Vậy x < 0 hoặc x > 1
+ M = 0 \(\Rightarrow\frac{x-1}{x}=0\Rightarrow x-1=0\Rightarrow x=1\)
Vậy x = 1