Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)
=\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)
Câu 1) a) ĐKXĐ \(x\ge0,\)\(x\ne4\)A=\(\frac{x+2\sqrt{x}-4}{2\left(x-4\right)}\)b) Mình chưa làm được Câu 2) a) ĐKXĐ \(x>0,\)\(x\ne4\)A=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)b) Để a<\(\frac{1}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\)\(\Rightarrow x< 1\)\(\Rightarrow0< x< 1\)thỏa mãn bài toán c) Ta có A=\(\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\), để A \(\in Z\)\(\Rightarrow\sqrt{x}\inƯ\left(1\right)\), \(\Rightarrow x=1\)( thỏa mãn ĐK)
a/ \(\frac{x-2}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{2}{\sqrt{x}+2}\)
\(=\frac{x-2}{x+2\sqrt{x}}-\frac{\sqrt{x}+2}{x+2\sqrt{x}}+\frac{2\sqrt{x}}{x+2\sqrt{x}}\)
\(=\frac{x+\sqrt{x}-4}{x+2\sqrt{x}}\)
b/ \(\frac{x+\sqrt{x}-4}{x+2\sqrt{x}}=\frac{4+2\sqrt{3}+\sqrt{\left(\sqrt{3}+1\right)^2}-4}{4+2\sqrt{3}+2\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\frac{4+2\sqrt{3}+\sqrt{3}+1-4}{4+2\sqrt{3}+2\sqrt{3}+2}=\frac{1+3\sqrt{3}}{6+4\sqrt{3}}\)
Đặt: \(\sqrt{x}=t\)( \(t\ge0;t\ne1\)) => \(A\ne0\)
Ta có: \(A=\frac{t-1}{t^2+t+1}\)
<=> \(At^2+At+A=t-1\)
<=> \(At^2+\left(A-1\right)t+\left(A+1\right)=0\) (1)
(1) có nghiệm <=> \(\Delta\ge0\)<=> \(-3A^2-6A+1\ge0\)<=> \(-1-\frac{2}{\sqrt{3}}\le A\le-1+\frac{2}{\sqrt{3}}\)
Theo đề ra A thuộc Z ; A khác 0
=> A \(\in\){ - 2; -1 }
+) Với A = - 2 thế vào (1) ta có: \(-2t^2-3t-1=0\) <=> \(\orbr{\begin{cases}t=-1\left(loai\right)\\t=-\frac{1}{2}\left(loai\right)\end{cases}}\)
+) Với A = -1 thế vào (1) ta có: \(-t^2-2t=0\)<=> \(\orbr{\begin{cases}t=0\left(tm\right)\\t=-2\left(loai\right)\end{cases}}\)
Với t = 0 ta có: \(\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
Vậy x = 0 ; A = -1